Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283090

RESUMO

Terrestrial arthropods in the Arctic are exposed to highly variable temperatures that frequently reach cold and warm extremes. Yet, ecophysiological studies on arctic insects typically focus on the ability of species to tolerate low temperatures, whereas studies investigating physiological adaptations of species to periodically warm and variable temperatures are few. In this study, we investigated temporal changes in thermal tolerances and the transcriptome in the Greenlandic seed bug Nysius groenlandicus, collected in the field across different times and temperatures in Southern Greenland. We found that plastic changes in heat and cold tolerances occurred rapidly (within hours) and at a daily scale in the field, and that these changes are correlated with diurnal temperature variation. Using RNA sequencing, we provide molecular underpinnings of the rapid adjustments in thermal tolerance across ambient field temperatures and in the laboratory. We show that transcriptional responses are sensitive to daily temperature changes, and days characterized by high temperature variation induced markedly different expression patterns than thermally stable days. Further, genes associated with laboratory-induced heat responses, including expression of heat shock proteins and vitellogenins, were shared across laboratory and field experiments, but induced at time points associated with lower temperatures in the field. Cold stress responses were not manifested at the transcriptomic level.


Assuntos
Aclimatação , Artrópodes , Animais , Aclimatação/fisiologia , Artrópodes/metabolismo , Temperatura Baixa , Temperatura Alta , Insetos/genética , Temperatura , Transcriptoma
2.
Microb Cell Fact ; 21(1): 9, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012550

RESUMO

The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.


Assuntos
Proteínas de Bactérias/metabolismo , Fusarium/enzimologia , Policetídeo Sintases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Xantonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Clonagem Molecular , Fusarium/genética , Isoquinolinas/metabolismo , Modelos Moleculares , Policetídeo Sintases/química , Policetídeo Sintases/genética , Domínios Proteicos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
3.
PLoS Genet ; 15(6): e1008205, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31188830

RESUMO

The relationship between population size, inbreeding, loss of genetic variation and evolutionary potential of fitness traits is still unresolved, and large-scale empirical studies testing theoretical expectations are surprisingly scarce. Here we present a highly replicated experimental evolution setup with 120 lines of Drosophila melanogaster having experienced inbreeding caused by low population size for a variable number of generations. Genetic variation in inbred lines and in outbred control lines was assessed by genotyping-by-sequencing (GBS) of pooled samples consisting of 15 males per line. All lines were reared on a novel stressful medium for 10 generations during which body mass, productivity, and extinctions were scored in each generation. In addition, we investigated egg-to-adult viability in the benign and the stressful environments before and after rearing at the stressful conditions for 10 generations. We found strong positive correlations between levels of genetic variation and evolutionary response in all investigated traits, and showed that genomic variation was more informative in predicting evolutionary responses than population history reflected by expected inbreeding levels. We also found that lines with lower genetic diversity were at greater risk of extinction. For viability, the results suggested a trade-off in the costs of adapting to the stressful environments when tested in a benign environment. This work presents convincing support for long-standing evolutionary theory, and it provides novel insights into the association between genetic variation and evolutionary capacity in a gradient of diversity rather than dichotomous inbred/outbred groups.


Assuntos
Variação Genética/genética , Genética Populacional , Genótipo , Endogamia , Animais , Drosophila melanogaster/genética , Feminino , Genômica , Masculino , Fenótipo , Densidade Demográfica , Análise de Sequência de DNA
4.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066643

RESUMO

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Assuntos
Clonagem Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Naftoquinonas/metabolismo , Policetídeo Sintases/genética , Proteínas Fúngicas/metabolismo , Isoquinolinas/metabolismo , Família Multigênica , Policetídeo Sintases/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética
5.
BMC Plant Biol ; 19(1): 262, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208336

RESUMO

BACKGROUND: Stored potato (Solanum tuberosum L.) tubers are sensitive to wet conditions that can cause rotting in long-term storage. To study the effect of water on the tuber surface during storage, microarray analysis, RNA-Seq profiling, qRT-PCR and phytohormone measurements were performed to study gene expression and hormone content in wet tubers incubated at two temperatures: 4 °C and 15 °C. The growth of the plants was also observed in a greenhouse after the incubation of tubers in wet conditions. RESULTS: Wet conditions induced a low-oxygen response, suggesting reduced oxygen availability in wet tubers at both temperatures when compared to that in the corresponding dry samples. Wet conditions induced genes coding for heat shock proteins, as well as proteins involved in fermentative energy production and defense against reactive oxygen species (ROS), which are transcripts that have been previously associated with low-oxygen stress in hypoxic or anoxic conditions. Wet treatment also induced senescence-related gene expression and genes involved in cell wall loosening, but downregulated genes encoding protease inhibitors and proteins involved in chloroplast functions and in the biosynthesis of secondary metabolites. Many genes involved in the production of phytohormones and signaling were also affected by wet conditions, suggesting altered regulation of growth by wet conditions. Hormone measurements after incubation showed increased salicylic acid (SA), abscisic acid (ABA) and auxin (IAA) concentrations as well as reduced production of jasmonate 12-oxo-phytodienoic acid (OPDA) in wet tubers. After incubation in wet conditions, the tubers produced fewer stems and more roots compared to controls incubated in dry conditions. CONCLUSIONS: In wet conditions, tubers invest in ROS protection and defense against the abiotic stress caused by reduced oxygen due to excessive water. Changes in ABA, SA and IAA that are antagonistic to jasmonates affect growth and defenses, causing induction of root growth and rendering tubers susceptible to necrotrophic pathogens. Water on the tuber surface may function as a signal for growth, similar to germination of seeds.


Assuntos
Armazenamento de Alimentos , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Tubérculos/crescimento & desenvolvimento , Metabolismo Secundário , Solanum tuberosum/crescimento & desenvolvimento , Transcriptoma , Água
6.
J Nat Prod ; 80(7): 2131-2135, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28708398

RESUMO

Production of chrysogine has been reported from several fungal genera including Penicillium, Aspergillus, and Fusarium. Anthranilic acid and pyruvic acid, which are expected precursors of chrysogine, enhance production of this compound. A possible route for the biosynthesis using these substrates is via a nonribosomal peptide synthetase (NRPS). Through comparative analysis of the NRPSs from genome-sequenced producers of chrysogine we identified a candidate NRPS cluster comprising five additional genes named chry2-6. Deletion of the two-module NRPS (NRPS14 = chry1) abolished chrysogine production in Fusarium graminearum, indicating that the gene cluster is responsible for chrysogine biosynthesis. Overexpression of NRPS14 enhanced chrysogine production, suggesting that the NRPS is the bottleneck in the biosynthetic pathway.


Assuntos
Alcaloides/metabolismo , Peptídeo Sintases/metabolismo , Quinazolinonas/metabolismo , Alcaloides/química , Aspergillus/química , Aspergillus/genética , Vias Biossintéticas , Fusarium/química , Fusarium/genética , Estrutura Molecular , Família Multigênica , Penicillium/química , Penicillium/genética , Ácido Pirúvico/metabolismo , Quinazolinonas/química , ortoaminobenzoatos/metabolismo
7.
BMC Microbiol ; 16: 80, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27150914

RESUMO

BACKGROUND: Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans. Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy, respectively. We compared our findings with the genome, transcriptome and metabolome of the S. aureus joint fluid isolate grown in vitro. RESULT: From the transcriptome analysis we found increased expression of siderophore synthesis genes and multiple known virulence genes. The regulatory pattern of catabolic pathway genes indicated that the bacterial infection was sustained on amino acids, glycans and nucleosides. Upregulation of fermentation genes and the presence of ethanol in joint fluid indicated severe oxygen limitation in vivo. CONCLUSION: This single case study highlights the capacity of combined transcriptome and metabolome analyses for elucidating the pathogenesis of prosthetic infections of major clinical importance.


Assuntos
Perfilação da Expressão Gênica/métodos , Prótese do Joelho/efeitos adversos , Metabolômica/métodos , Infecções Relacionadas à Prótese/microbiologia , Análise de Sequência de RNA/métodos , Staphylococcus aureus/isolamento & purificação , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Projetos Piloto , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
8.
Theor Appl Genet ; 128(11): 2143-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26163769

RESUMO

KEY MESSAGE: WUE phenotyping and subsequent QTL analysis revealed cytosolic GS genes importance for limiting N loss due to photorespiration under well-watered and well-fertilized conditions. Potato (Solanum tuberosum L.) closes its stomata at relatively low soil water deficits frequently encountered in normal field conditions resulting in unnecessary annual yield losses and extensive use of artificial irrigation. Therefore, unraveling the genetics underpinning variation in water use efficiency (WUE) of potato is important, but has been limited by technical difficulties in assessing the trait on individual plants and thus is poorly understood. In this study, a mapping population of potatoes has been robustly phenotyped, and considerable variation in WUE under well-watered conditions was observed. Two extreme WUE bulks of clones were identified and pools of genomic DNA from them as well as the parents were sequenced and mapped to reference potato genome. Following a novel data analysis approach, two highly resolved QTLs were found on chromosome 1 and 9. Interestingly, three genes encoding isoforms of cytosolic glutamine synthase were located in the QTL at chromosome 1 suggesting a major contribution of this enzyme to photosynthetic efficiency and thus WUE in potato. Indeed, Glutamine synthetase enzyme activity of leaf extracts was measured and found to be correlated with contrasting WUE phenotypes.


Assuntos
Glutamato-Amônia Ligase/fisiologia , Fotossíntese , Proteínas de Plantas/fisiologia , Locos de Características Quantitativas , Solanum tuberosum/genética , Água/fisiologia , Mapeamento Cromossômico , Citosol/enzimologia , DNA de Plantas/genética , Glutamato-Amônia Ligase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Análise de Sequência de DNA , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologia
9.
Front Plant Sci ; 15: 1340189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525152

RESUMO

Genomic prediction and genome-wide association studies are becoming widely employed in potato key performance trait QTL identifications and to support potato breeding using genomic selection. Elite cultivars are tetraploid and highly heterozygous but also share many common ancestors and generation-spanning inbreeding events, resulting from the clonal propagation of potatoes through seed potatoes. Consequentially, many SNP markers are not in a 1:1 relationship with a single allele variant but shared over several alleles that might exert varying effects on a given trait. The impact of such redundant "diluted" predictors on the statistical models underpinning genome-wide association studies (GWAS) and genomic prediction has scarcely been evaluated despite the potential impact on model accuracy and performance. We evaluated the impact of marker location, marker type, and marker density on the genomic prediction and GWAS of five key performance traits in tetraploid potato (chipping quality, dry matter content, length/width ratio, senescence, and yield). A 762-offspring panel of a diallel cross of 18 elite cultivars was genotyped by sequencing, and markers were annotated according to a reference genome. Genomic prediction models (GBLUP) were trained on four marker subsets [non-synonymous (29,553 SNPs), synonymous (31,229), non-coding (32,388), and a combination], and robustness to marker reduction was investigated. Single-marker regression GWAS was performed for each trait and marker subset. The best cross-validated prediction correlation coefficients of 0.54, 0.75, 0.49, 0.35, and 0.28 were obtained for chipping quality, dry matter content, length/width ratio, senescence, and yield, respectively. The trait prediction abilities were similar across all marker types, with only non-synonymous variants improving yield predictive ability by 16%. Marker reduction response did not depend on marker type but rather on trait. Traits with high predictive abilities, e.g., dry matter content, reached a plateau using fewer markers than traits with intermediate-low correlations, such as yield. The predictions were unbiased across all traits, marker types, and all marker densities >100 SNPs. Our results suggest that using non-synonymous variants does not enhance the performance of genomic prediction of most traits. The major known QTLs were identified by GWAS and were reproducible across exonic and whole-genome variant sets for dry matter content, length/width ratio, and senescence. In contrast, minor QTL detection was marker type dependent.

10.
BMC Genomics ; 13: 596, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23127183

RESUMO

BACKGROUND: Malignant cells in tumours of B-cell origin account for 0.1% to 98% of the total cell content, depending on disease entity. Recently, gene expression profiles (GEPs) of B-cell lymphomas based on microarray technologies have contributed significantly to improved sub-classification and diagnostics. However, the varying degrees of malignant B-cell frequencies in analysed samples influence the interpretation of the GEPs. Based on emerging next-generation sequencing technologies (NGS) like tag sequencing (tag-seq) for GEP, it is expected that the detection of mRNA transcripts from malignant B-cells can be supplemented. This study provides a quantitative assessment and comparison of the ability of microarrays and tag-seq to detect mRNA transcripts from malignant B-cells. A model system was established by eight serial dilutions of the malignant B-cell lymphoma cell line, OCI-Ly8, into the embryonic kidney cell line, HEK293, prior to parallel analysis by exon microarrays and tag-seq. RESULTS: We identified 123 and 117 differentially expressed genes between pure OCI-Ly8 and HEK293 cells by exon microarray and tag-seq, respectively. There were thirty genes in common, and of those, most were B-cell specific. Hierarchical clustering from all dilutions based on the differentially expressed genes showed that neither technology could distinguish between samples with less than 1% malignant B-cells from non-B-cells. A novel statistical concept was developed to assess the ability to detect single genes for both technologies, and used to demonstrate an inverse proportional relationship with the sample purity. Of the 30 common genes, the detection capability of a representative set of three B-cell specific genes--CD74, HLA-DRA, and BCL6 - was analysed. It was noticed that at least 5%, 13% and 22% sample purity respectively was required for detection of the three genes by exon microarray whereas at least 2%, 4% and 51% percent sample purity of malignant B-cells were required for tag-seq detection. CONCLUSION: A sample purity-dependent loss of the ability to detect genes for both technologies was demonstrated. Taq-seq, in comparison to exon microarray, required slightly less malignant B-cells in the samples analysed in order to detect the two most abundantly expressed of the selected genes. The results show that malignant cell frequency is an important variable, with fundamental impact when interpreting GEPs from both technologies.


Assuntos
Linfoma de Células B/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , Antígenos de Diferenciação de Linfócitos B/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Proteínas de Ligação a DNA/genética , Éxons , Células HEK293 , Cadeias alfa de HLA-DR/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Linfoma de Células B/metabolismo , Modelos Genéticos , Proteínas Proto-Oncogênicas c-bcl-6
11.
PLoS One ; 17(8): e0273481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36037153

RESUMO

Dickeya solani is a soft rot bacterium with high virulence. In potato, D. solani, like the other potato-infecting soft rot bacteria, causes rotting and wilting of the stems and rotting of tubers in the field and in storage. Latent, asymptomatic infections of potato tubers are common in harvested tubers, and if the storage conditions are not optimal, the latent infection turns into active rotting. We characterized potato gene expression in artificially inoculated tubers in nonsymptomatic, early infections 1 and 24 hours post-inoculation (hpi) and compared the results to the response in symptomatic tuber tissue 1 week (168 hpi) later with RNA-Seq. In the beginning of the infection, potato tubers expressed genes involved in the detection of the bacterium through pathogen-associated molecular patterns (PAMPs), which induced genes involved in PAMPs-triggered immunity, resistance, production of pathogenesis-related proteins, ROS, secondary metabolites and salicylic acid (SA) and jasmonic acid (JA) biosynthesis and signaling genes. In the symptomatic tuber tissue one week later, the PAMPs-triggered gene expression was downregulated, whereas primary metabolism was affected, most likely leading to free sugars fueling plant defense but possibly also aiding the growth of the pathogen. In the symptomatic tubers, pectic enzymes and cell wall-based defenses were activated. Measurement of hormone production revealed increased SA concentration and almost no JA in the asymptomatic tubers at the beginning of the infection and high level of JA and reduced SA in the symptomatic tubers one week later. These findings suggest that potato tubers rely on different defense strategies in the different phases of D. solani infection even when the infection takes place in fully susceptible plants incubated in conditions leading to rotting. These results support the idea that D. solani is a biotroph rather than a true necrotroph.


Assuntos
Solanum tuberosum , Dickeya , Enterobacteriaceae/genética , Expressão Gênica , Moléculas com Motivos Associados a Patógenos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas , Ácido Salicílico , Solanum tuberosum/microbiologia
13.
Front Genome Ed ; 3: 795644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35128523

RESUMO

Potato, Solanum tuberosum is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3-2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. At the same time, high editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids. Furthermore, high editing efficiencies reduce the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNPs) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and the DMR6-1, 6-10 gRNAs were designed to target regions comprising the 5' and the 3' end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs varied significantly, and some generated specific indel patterns. RNP's targeting the 5' end of GWD1 yielded significantly higher editing efficiency as compared to targeting the 3' end. For DMR6-1, such an effect was not seen. Simultaneously targeting each of the two target regions with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3' end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or a slightly negative effect on editing from the single or combined gRNA/RNPs. These initial findings may instigate much larger studies needed for facilitating and optimizing precision breeding in plants.

14.
Methods Mol Biol ; 387: 71-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18287623

RESUMO

Serial analysis of gene expression (SAGE) requires the sequencing of DNA. The principal cost of SAGE is largely determined by the cost of sequencing. Therefore, it is important to have access to a robust and affordable sequencing system. Here, we describe such a system based on the sequencing of amplified inserts of concatemer-containing clones.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Cromatografia em Gel , Custos e Análise de Custo , DNA/genética , DNA/isolamento & purificação , Primers do DNA/genética , Eletroforese em Gel de Ágar , Perfilação da Expressão Gênica/economia , Dados de Sequência Molecular , Plasmídeos/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA/economia
15.
Methods Mol Biol ; 387: 81-94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18287624

RESUMO

Combining serial analysis of gene expression (SAGE) with pyrophosphatase-based ultra-high-throughput DNA sequencing provides increased sensitivity and cost-effective gene expression profiling. The combined techniques obviate the formation and cloning of concatemers and the tedious picking and preparation of sequence templates from bacterial clones that are necessary with SAGE alone. Furthermore, multiplexing of samples or replicates of analysis is included in the experimental design.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequência de Bases , Análise Custo-Benefício , DNA Complementar/biossíntese , DNA Complementar/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Perfilação da Expressão Gênica/economia , Perfilação da Expressão Gênica/estatística & dados numéricos , Técnicas de Amplificação de Ácido Nucleico , Pirofosfatases , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
16.
Methods Mol Biol ; 387: 109-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18287626

RESUMO

Serial analysis of gene expression (SAGE) studies often yield numerous tags that cannot be mapped to known gene sequences. Intriguingly, these may represent unknown genes, unknown parts of genes, or transcript variants. In order to elucidate the origin of these tags, 3'- and 5'-rapid amplification of complementary DNA ends (RACE) reactions can be performed using primers identical or complementary to SAGE tags. This way, transcript fragments, or indeed the entire uncharacterized transcript, can be cloned and sequenced.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Bacteriófago lambda/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Eletroforese em Gel de Ágar , Escherichia coli/genética , Biblioteca Gênica
17.
Methods Mol Biol ; 387: 3-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18287619

RESUMO

Serial analysis of gene expression (SAGE) is a high-throughput method for global gene expression analysis that allows the quantitative and simultaneous analysis of a large number of transcripts. SAGE is a digital method and its sensitivity depends only on the number of tags sequenced. Furthermore, SAGE is a powerful tool for finding novel genes that are expressed under certain conditions or in certain tissues. SAGE has been widely used in fields as diverse as cancer research and the development and study of microorganisms. The SAGE method is a series of routine molecular biology procedure and can, at least in principle, be carried out in any laboratory. However, the number of consecutive steps is quite large and in practice, SAGE has been difficult to carry out on a routine basis.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Escherichia coli/genética , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Solanum tuberosum/genética , Transformação Genética
18.
Front Plant Sci ; 9: 1118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131817

RESUMO

Genomic selection (GS) is becoming increasingly applicable to crops as the genotyping costs continue to decrease, which makes it an attractive alternative to traditional selective breeding based on observed phenotypes. With genome-wide molecular markers, selection based on predictions from genotypes can be made in the absence of direct phenotyping. The reliability of predictions depends strongly on the number of individuals used for training the predictive algorithms, particularly in a highly genetically diverse organism such as potatoes; however, the relationship between the individuals also has an enormous impact on prediction accuracy. Here we have studied genomic prediction in three different panels of potato cultivars, varying in size, design, and phenotypic profile. We have developed genomic prediction models for two important agronomic traits of potato, dry matter content and chipping quality. We used genotyping-by-sequencing to genotype 1,146 individuals and generated genomic prediction models from 167,637 markers to calculate genomic estimated breeding values with genomic best linear unbiased prediction. Cross-validated prediction correlations of 0.75-0.83 and 0.39-0.79 were obtained for dry matter content and chipping quality, respectively, when combining the three populations. These prediction accuracies were similar to those obtained when predicting performance within each panel. In contrast, but not unexpectedly, predictions across populations were generally lower, 0.37-0.71 and 0.28-0.48 for dry matter content and chipping quality, respectively. These predictions are not limited by the number of markers included, since similar prediction accuracies could be obtained when using merely 7,800 markers (<5%). Our results suggest that predictions across breeding populations in tetraploid potato are presently unreliable, but that individual prediction models within populations can be combined in an additive fashion to obtain high quality prediction models relevant for several breeding populations.

19.
Plant Genome ; 11(1)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505631

RESUMO

Kleb. is a pathogenic fungus causing wilting, chlorosis, and early dying in potato ( L.). Genetic mapping of resistance to was done using a diploid population of potato. The major quantitative trait locus (QTL) for resistance was found on chromosome 5. The gene, controlling earliness of maturity and tuberization, was mapped within the interval. Another QTL on chromosome 9 co-localized with the wilt resistance gene marker. Epistasis analysis indicated that the loci on chromosomes 5 and 9 had a highly significant interaction, and that functioned downstream of The alleles were sequenced and found to encode StCDF1.1 and StCDF1.3. Interaction between the resistance allele and the was demonstrated, but not for Genome-wide expression QTL (eQTL) analysis was performed and genes with eQTL at the and loci were both found to have similar functions involving the chloroplast, including photosynthesis, which declines in both maturity and wilt. Among the gene ontology (GO) terms that were specific to genes with eQTL at the , but not the locus, were those associated with fungal defense. These results suggest that controls fungal defense and reduces early dying in wilt through affecting genetic pathway controlling tuberization timing.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Solanum tuberosum/fisiologia , Verticillium/patogenicidade , Diploide , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Tubérculos/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA