Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(34): E5082-9, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506796

RESUMO

The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon-carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Diterpenos/metabolismo , Euphorbia/química , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Antineoplásicos Fitogênicos/química , Clonagem Molecular , Ciclização , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/química , Euphorbia/genética , Euphorbia/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , Fenilpropionatos/química , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma
2.
Appl Microbiol Biotechnol ; 101(10): 4103-4113, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28204885

RESUMO

Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading to the formation of high-value compounds. In the present study, we systematically maximize the heterologous expression of six different plant-derived CYP genes in Escherichia coli, using a workflow based on C-terminal fusions to the green fluorescent protein. The six genes can be over-expressed in both K- and B-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment and the soluble domain is modified, in order to verify the importance of this region for enzymatic activity. The work describes how membrane bound CYPs are optimally produced in E. coli and thus adds this plant multi-membered key enzyme family to the toolbox for bacterial cell factory design.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Escherichia coli/genética , Plantas/genética , Animais , Biocatálise , Clonagem Molecular/métodos , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Oxirredução , Plantas/enzimologia , Proteínas Recombinantes de Fusão/biossíntese , Deleção de Sequência
3.
Appl Environ Microbiol ; 80(23): 7258-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239892

RESUMO

Forskolin is a promising medicinal compound belonging to a plethora of specialized plant metabolites that constitute a rich source of bioactive high-value compounds. A major obstacle for exploitation of plant metabolites is that they often are produced in small amounts and in plants difficult to cultivate. This may result in insufficient and unreliable supply leading to fluctuating and high sales prices. Hence, substantial efforts and resources have been invested in developing sustainable and reliable supply routes based on microbial cell factories. Here, we report microbial synthesis of (13R)-manoyl oxide, a proposed intermediate in the biosynthesis of forskolin and other medically important labdane-type terpenoids. Process optimization enabled synthesis of enantiomerically pure (13R)-manoyl oxide as the sole metabolite, providing a pure compound in just two steps with a yield of 10 mg/liter. The work presented here demonstrates the value of a standardized bioengineering pipeline and the large potential of microbial cell factories as sources for sustainable synthesis of complex biochemicals.


Assuntos
Biotecnologia/métodos , Diterpenos/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Plantas/enzimologia , Colforsina/metabolismo , Escherichia coli/genética , Plantas/genética , Plantas/metabolismo , Estereoisomerismo
4.
Appl Environ Microbiol ; 77(9): 3044-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398493

RESUMO

Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid.


Assuntos
Aspergillus nidulans/genética , Expressão Gênica , Engenharia Genética/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Genes Fúngicos , Família Multigênica , Ácido Micofenólico/metabolismo , Penicillium/enzimologia , Penicillium/genética , Policetídeo Sintases/biossíntese , Policetídeo Sintases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
5.
Acta Crystallogr C ; 67(Pt 3): o125-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21368412

RESUMO

The fungal metabolite (+)-geodin [systematic name: (2R)-methyl 5,7-dichloro-4-hydroxy-6'-methoxy-6-methyl-3,4'-dioxospiro[benzofuran-2,1'-cyclohexa-2',5'-diene]-2'-carboxylate], C(17)H(12)Cl(2)O(7), was isolated from Aspergillus terreus. The crystal structure contains two independent molecules in the asymmetric unit. Molecules denoted 1 interact through O-H...O hydrogen bonds creating chains of molecules parallel to the crystallographic 2(1) screw axis. Molecules denoted 2 interact through an O...Cl halogen bond, also creating chains of molecules parallel to the crystallographic 2(1) screw axis. Molecules 1 and 2 interact through another O...Cl halogen bond. The two molecules are similar but molecules 2 have a slightly more planar cyclohexadiene ring than molecules 1. The absolute structure of (+)-geodin has been unequivocally assigned with the spiro centre having the R configuration in both molecules. The structurally related (+)-griseofulvin has an S configuration at the spiro centre, a difference of potential biological and biosynthetic relevance.


Assuntos
Benzofuranos/química , Aspergillus/química , Benzofuranos/isolamento & purificação , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
6.
Nucleic Acids Res ; 35(7): e55, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17389646

RESUMO

We present a method that allows simultaneous fusion and cloning of multiple PCR products in a rapid and efficient manner. The procedure is based on the use of PCR primers that contain a single deoxyuridine residue near their 5' end. Treatment of the PCR products with a commercial deoxyuridine-excision reagent generates long 3' overhangs designed to specifically complement each other. The combination of this principle with the improved USER cloning technique provides a simple, fast and very efficient method to simultaneously fuse and clone multiple PCR fragments into a vector of interest. Around 90% positive clones were obtained when three different PCR products were fused and cloned into a USER-compatible vector in a simple procedure that, apart from the single PCR amplification step and the bacterial transformation, took approximately one hour. We expect this method to replace overlapping PCR and the use of type IIS restriction enzymes in many of their applications.


Assuntos
Fusão Gênica Artificial/métodos , Clonagem Molecular/métodos , Reação em Cadeia da Polimerase , Cromatografia em Agarose , Fases de Leitura Aberta
7.
Nat Genet ; 50(12): 1688-1695, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30349117

RESUMO

Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter- and intraspecies genomic variation. We further predicted 17,903 carbohydrate-active enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.


Assuntos
Aspergillus/genética , Especiação Genética , Variação Genética , Genoma Fúngico , Aspergillus/classificação , Aspergillus/metabolismo , Sequência de Bases , Metabolismo dos Carboidratos/genética , Genoma Fúngico/genética , Família Multigênica , Filogenia , Especificidade da Espécie , Sequenciamento Completo do Genoma
8.
ACS Synth Biol ; 4(9): 1042-6, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26263045

RESUMO

Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that produces ß-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly facilitating the advanced engineering of robust cell factories.


Assuntos
Clonagem Molecular , DNA Bacteriano/genética , Pantoea/genética , Uracila/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Fragmentação do DNA , Engenharia Genética , Família Multigênica , beta Caroteno/biossíntese
9.
ACS Synth Biol ; 4(3): 274-82, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24905856

RESUMO

Standardization of molecular cloning greatly facilitates advanced DNA engineering, parts sharing, and collaborative efforts such as the iGEM competition. All of these attributes facilitate exploitation of the wealth of genetic information made available by genome and RNA sequencing. Standardization also comes at the cost of reduced flexibility. We addressed this paradox by formulating a set of design principles aimed at maximizing standardization while maintaining high flexibility in choice of cloning technique and minimizing the impact of standard sequences. The design principles were applied to formulate a molecular cloning pipeline and iteratively assemble and optimize a six-gene pathway for protoporphyrin IX synthesis in Escherichia coli. State of the art production levels were achieved through two simple cycles of engineering and screening. The principles defined here are generally applicable and simplifies the experimental design of projects aimed at biosynthetic pathway construction or engineering.


Assuntos
Clonagem Molecular/métodos , Escherichia coli/genética , Porfirinas/metabolismo , Biologia Sintética/métodos , DNA/genética , DNA/metabolismo , Engenharia Metabólica , Porfirinas/análise , Porfirinas/genética
10.
Metabolites ; 2(1): 100-33, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24957370

RESUMO

Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult. Fortunately, the genome sequences of several filamentous fungi are publicly available, greatly facilitating the establishment of links between genes and metabolites. This review covers the attempts being made to trigger the activation of polyketide metabolism in the fungal model organism Aspergillus nidulans. Moreover, it will provide an overview of the pathways where ten polyketide synthase genes have been coupled to polyketide products. Therefore, the proposed biosynthesis of the following metabolites will be presented; naphthopyrone, sterigmatocystin, aspyridones, emericellamides, asperthecin, asperfuranone, monodictyphenone/emodin, orsellinic acid, and the austinols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA