Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Carcinog ; 58(3): 398-410, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30378175

RESUMO

Wnt pathway activation maintains the cancer stem cell (CSC) phenotype and promotes tumor progression, making it an attractive target for anti-cancer therapy. Wnt signaling at the tumor and tumor microenvironment (TME) front have not been investigated in depth in head and neck squamous cell carcinoma (HNSCC). In a cohort of 48 HNSCCs, increased Wnt signaling, including Wnt genes (AXIN2, LGR6, WISP1) and stem cell factors (RET, SOX5, KIT), were associated with a more advanced clinical stage. Key Wnt pathway proteins were most abundant at the cancer epithelial-stromal boundary. To investigate these observations, we generated three pairs of cancer-cancer associated fibroblast (CAF) cell lines derived from the same HNSCC patients. 3D co-culture of cancer spheres and CAFs mimicked these in vivo interactions, and using these we observed increased expression of Wnt genes (eg, WNT3A, WNT7A, WNT16) in both compartments. Of these Wnt ligands, we found Wnt3a, and less consistently Wnt16, activated Wnt signaling in both cancer cells and CAFs. Wnt activation increased CSC characteristics like sphere formation and invasiveness, which was further regulated by the presence of CAFs. Time lapse microscopy also revealed preferential Wnt activation of cancer cells. Wnt inhibitors, OMP-18R5 and OMP-54F28, significantly reduced growth of HNSCC patient-derived xenografts and suppressed Wnt activation at the tumor epithelial-stromal boundary. Taken together, our findings suggest that Wnt signaling is initiated in cancer cells which then activate CAFs, and in turn perpetuate a paracrine signaling loop. This suggests that targeting Wnt signaling in the TME is essential.


Assuntos
Carcinoma de Células Escamosas/patologia , Comunicação Celular , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Via de Sinalização Wnt , Animais , Apoptose , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Carcinog ; 57(11): 1651-1663, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30129680

RESUMO

In this report, we describe in detail the evolving procedures to optimize humanized mouse cohort generation, including optimal conditioning, choice of lineage for engraftment, threshold for successful engraftment, HNSCC tumor implantation, and immune and stroma cell analyses. We developed a dual infusion protocol of human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), leading to incremental human bone marrow engraftment, and exponential increase in mature peripheral human immune cells, and intratumor homing that includes a more complete lineage reconstitution. Additionally, we have identified practical rules to predict successful HSPC/MSC expansion, and a peripheral human cell threshold associated with bone marrow engraftment, both of which will optimize cohort generation and management. The tremendous advances in immune therapy in cancer have made the need for appropriate and standardized models more acute than ever, and therefore, we anticipate that this manuscript will have an immediate impact in cancer-related research. The need for more representative tools to investigate the human tumor microenvironment (TME) has led to the development of humanized mouse models. However, the difficulty of immune system engraftment and minimal human immune cell infiltration into implanted xenografts are major challenges. We have developed an improved method for generating mismatched humanized mice (mHM), using a dual infusion of human HSPCs and MSCs, isolated from cord blood and expanded in vitro. Engraftment with both HSPCs and MSCs produces mice with almost twice the percentage of human immune cells in their bone marrow, compared to mice engrafted with HSPCs alone, and yields 9- to 38-fold higher levels of mature peripheral human immune cells. We identified a peripheral mHM blood human B cell threshold that predicts an optimal degree of mouse bone marrow humanization. When head and neck squamous cell carcinoma (HNSCC) tumors are implanted on the flanks of HSPC-MSC engrafted mice, human T cells, B cells, and macrophages infiltrate the stroma of these tumors at 2- to 8-fold higher ratios. In dually HSPC-MSC engrafted mice we also more frequently observed additional types of immune cells, including regulatory T cells, cytotoxic T cells, and MDSCs. Higher humanization was associated with in vivo response to immune-directed therapy. The complex immune environment arising in tumors from dually HSPC-MSC engrafted mice better resembles that of the originating patient's tumor, suggesting an enhanced capability to accurately recapitulate a human TME.


Assuntos
Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/patologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Biomarcadores , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Transplante Heterólogo
3.
J Natl Cancer Inst ; 115(11): 1392-1403, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389416

RESUMO

BACKGROUND: The programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) are validated cancer targets; however, emerging mechanisms and impact of PD-L1 intracellular signaling on cancer behavior are poorly understood. METHODS: We investigated the cancer cell intrinsic role of PD-L1 in multiple patient-derived models in vitro and in vivo. PD-L1 overexpression, knockdown, and PD-L1 intracellular domain (PD-L1-ICD) deletion (Δ260-290PD-L1) models were assessed for key cancer properties: clonogenicity, motility, invasion, and immune evasion. To determine how PD-L1 transduces signals intracellularly, we used the BioID2 platform to identify the PD-L1 intracellular interactome. Both human papillomavirus-positive and negative patient-derived xenografts were implanted in NOD-scid-gamma and humanized mouse models to investigate the effects of recombinant PD-1, anti-PD-L1, and anti-signal transducer and activator of transcription 3 (STAT3) in vivo. RESULTS: PD-L1 intracellular signaling increased clonogenicity, motility, and invasiveness in multiple head and neck squamous cell carcinoma (HNSCC) models, and PD-1 binding enhanced these effects. Protein proximity labeling revealed the PD-L1 interactome, distinct for unbound and bound PD-1, which initiated cancer cell-intrinsic signaling. PD-L1 binding partners interleukin enhancer binding factors 2 and 3 (ILF2-ILF3) transduced their effect through STAT3. Δ260-290PD-L1 disrupted signaling and reversed pro-growth properties. In humanized HNSCC in vivo models bearing T-cells, PD-1 binding triggered PD-L1 signaling, and dual PD-L1 and STAT3 inhibition were required to achieve tumor control. CONCLUSIONS: Upon PD-1 binding, the PD-L1 extracellular and intracellular domains exert a synchronized effect to promote immune evasion by inhibiting T-cell function while simultaneously enhancing cancer cell-invasive properties.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Camundongos , Neoplasias de Cabeça e Pescoço/genética , Camundongos Endogâmicos NOD , Receptor de Morte Celular Programada 1 , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
4.
Mol Cancer Res ; 19(7): 1123-1136, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33846123

RESUMO

Prostate cancer genomic subtypes that stratify aggressive disease and inform treatment decisions at the primary stage are currently limited. Previously, we functionally validated an aggressive subtype present in 15% of prostate cancer characterized by dual deletion of MAP3K7 and CHD1. Recent studies in the field have focused on deletion of CHD1 and its role in androgen receptor (AR) chromatin distribution and resistance to AR-targeted therapy; however, CHD1 is rarely lost without codeletion of MAP3K7. Here, we show that in the clinically relevant context of co-loss of MAP3K7 and CHD1 there are significant, collective changes to aspects of AR signaling. Although CHD1 loss mainly impacts the expansion of the AR cistrome, loss of MAP3K7 drives increased AR target gene expression. Prostate cancer cell line models engineered to cosuppress MAP3K7 and CHD1 also demonstrated increased AR-v7 expression and resistance to the AR-targeting drug enzalutamide. Furthermore, we determined that low protein expression of both genes is significantly associated with biochemical recurrence (BCR) in a clinical cohort of radical prostatectomy specimens. Low MAP3K7 expression, however, was the strongest independent predictor for risk of BCR over all other tested clinicopathologic factors including CHD1 expression. Collectively, these findings illustrate the importance of MAP3K7 loss in a molecular subtype of prostate cancer that poses challenges to conventional therapeutic approaches. IMPLICATIONS: These findings strongly implicate MAP3K7 loss as a biomarker for aggressive prostate cancer with significant risk for recurrence that poses challenges for conventional androgen receptor-targeted therapies.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , MAP Quinase Quinase Quinases/genética , Neoplasias da Próstata/genética , Interferência de RNA , Receptores Androgênicos/genética , Transdução de Sinais/genética , Androgênios/farmacologia , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Logísticos , MAP Quinase Quinase Quinases/metabolismo , Masculino , Recidiva Local de Neoplasia , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Fatores de Risco
5.
Mol Cancer Res ; 19(2): 346-357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33087417

RESUMO

Resistance to immunotherapy is a significant challenge, and the scarcity of human models hinders the identification of the underlying mechanisms. To address this limitation, we constructed an autologous humanized mouse (aHM) model with hematopoietic stem and progenitor cells (HSPC) and tumors from 2 melanoma patients progressing to immunotherapy. Unlike mismatched humanized mouse (mHM) models, generated from cord blood-derived HSPCs and tumors from different donors, the aHM recapitulates a patient-specific tumor microenvironment (TME). When patient tumors were implanted on aHM, mHM, and NOD/SCID/IL2rg-/- (NSG) cohorts, tumors appeared earlier and grew faster on NSG and mHM cohorts. We observed that immune cells differentiating in the aHM were relatively more capable of circulating peripherally, invading into tumors and interacting with the TME. A heterologous, human leukocyte antigen (HLA-A) matched cohort also yielded slower growing tumors than non-HLA-matched mHM, indicating that a less permissive immune environment inhibits tumor progression. When the aHM, mHM, and NSG cohorts were treated with immunotherapies mirroring what the originating patients received, tumor growth in the aHM accelerated, similar to the progression observed in the patients. This rapid growth was associated with decreased immune cell infiltration, reduced interferon gamma (IFNγ)-related gene expression, and a reduction in STAT3 phosphorylation, events that were replicated in vitro using tumor-derived cell lines. IMPLICATIONS: Engrafted adult HSPCs give rise to more tumor infiltrative immune cells, increased HLA matching leads to slower tumor initiation and growth, and continuing immunotherapy past progression can paradoxically lead to increased growth.


Assuntos
Imunoterapia/métodos , Melanoma/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Res ; 80(19): 4185-4198, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816856

RESUMO

Tumor-associated macrophages (TAM) in the tumor microenvironment (TME) cooperate with cancer stem cells (CSC) to maintain stemness. We recently identified cluster of differentiation 44 (CD44) as a surface marker defining head and neck squamous cell carcinoma (HNSCC) CSC. PI3K-4EBP1-SOX2 activation and signaling regulate CSC properties, yet the upstream molecular control of this pathway and the mechanisms underlying cross-talk between TAM and CSC in HNSCC remain largely unknown. Because CD44 is a molecular mediator in the TME, we propose here that TAM-influenced CD44 signaling could mediate stemness via the PI3K-4EBP1-SOX2 pathway, possibly by modulating availability of hyaluronic acid (HA), the main CD44 ligand. HNSCC IHC was used to identify TAM/CSC relationships, and in vitro coculture spheroid models and in vivo mouse models were used to identify the influence of TAMs on CSC function via CD44. Patient HNSCC-derived TAMs were positively and negatively associated with CSC marker expression at noninvasive and invasive edge regions, respectively. TAMs increased availability of HA and increased cancer cell invasion. HA binding to CD44 increased PI3K-4EBP1-SOX2 signaling and the CSC fraction, whereas CD44-VCAM-1 binding promoted invasive signaling by ezrin/PI3K. In vivo, targeting CD44 decreased PI3K-4EBP1-SOX2 signaling, tumor growth, and CSC. TAM depletion in syngeneic and humanized mouse models also diminished growth and CSC numbers. Finally, a CD44 isoform switch regulated epithelial-to-mesenchymal plasticity as standard form of CD44 and CD44v8-10 determined invasive and tumorigenic phenotypes, respectively. We have established a mechanistic link between TAMs and CSCs in HNSCC that is mediated by CD44 intracellular signaling in response to extracellular signals. SIGNIFICANCE: These findings establish a mechanistic link between tumor cell CD44, TAM, and CSC properties at the tumor-stroma interface that can serve as a vital area of focus for target and drug discovery.


Assuntos
Neoplasias de Cabeça e Pescoço/patologia , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Macrófagos Associados a Tumor/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Ácido Hialurônico/metabolismo , Masculino , Camundongos Endogâmicos NOD , Monócitos/metabolismo , Monócitos/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
7.
Cancer Res ; 80(5): 1183-1198, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911553

RESUMO

Cancer stem cells (CSC) drive growth, therapy resistance, and recurrence in head and neck squamous cell carcinoma (HNSCC). Regulation of protein translation is crucial for normal stem cells and CSCs; its inhibition could disrupt stemness properties, but translation inhibitors are limited clinically due to toxicity. SVC112 is a synthetic derivative of bouvardin, a plant-derived translation elongation inhibitor. SVC112 had greater antiproliferative effects on HNSCC cells compared with the FDA-approved translation inhibitor omacetaxine mepesuccinate (HHT). SVC112 preferentially inhibited cancer cells compared with patient-matched cancer-associated fibroblasts, whereas HHT was equally toxic to both. SVC112 reduced sphere formation by cell lines and CSCs. SVC112 alone inhibited the growth of patient-derived xenografts (PDX), and SVC112 combined with radiation resulted in tumor regression in HPV-positive and HPV-negative HNSCC PDXs. Notably, CSC depletion after SVC112 correlated with tumor response. SVC112 preferentially impeded ribosomal processing of mRNAs critical for stress response and decreased CSC-related proteins including Myc and Sox2. SVC112 increased cell-cycle progression delay and slowed DNA repair following radiation, enhancing colony and sphere formation radiation effects. In summary, these data demonstrate that SVC112 suppresses CSC-related proteins, enhances the effects of radiation, and blocks growth of HNSCC PDXs by inhibiting CSCs. SIGNIFICANCE: Inhibiting protein elongation with SVC112 reduces tumor growth in head and neck squamous cell carcinoma and increases the effects of radiation by targeting the cancer stem cell pool.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/efeitos da radiação , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Peptídeos Cíclicos/química , Inibidores da Síntese de Proteínas/uso terapêutico , Dosagem Radioterapêutica , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oral Oncol ; 98: 118-124, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31586893

RESUMO

OBJECTIVES: To describe differences in cancer stem cell (CSC) presence and behavior associated with their intratumor compartment of origin using a patient-derived xenograft (PDX) model of oral cavity squamous cell carcinoma (OCSCC). MATERIALS AND METHODS: Four HPV-negative OCSCC PDX cases were selected (CUHN004, CUHN013, CUHN096, CUHN111) and the percentage of CSCs (ALDH+CD44high) was measured in the tumor Leading Edge (LE) and Core compartments of each PDX tumor case via fluorescence activated cell sorting (FACS). The fraction of cells in the proliferative phase was measured by Ki-67 labelling index of paraffin embedded tissue. The proliferation and invasion of LE versus Core CSCs were compared using sphere and Matrigel invasion assays, respectively. RESULTS: Both CUHN111 and CUHN004 demonstrate CSC enrichment in their LE compartments while CUHN013 and CUHN096 show no intratumor difference. Cases with LE CSC enrichment demonstrate greater Ki-67 labelling at the LE. CSC proliferative potential, assessed by sphere formation, reveals greater sphere formation in CUHN111 LE CSCs, but no difference between CUHN013 LE and Core CSCs. CUHN111 CSCs do not demonstrate an intratumor difference in invasiveness while CUHN013 LE CSCs are more invasive than Core CSCs. CONCLUSION: A discrete intratumor CSC niche is present in a subset of OCSCC PDX tumors. The CSC functional phenotype with regard to proliferation and invasion is associated with the intratumor compartment of origin of the CSC: LE or Core. These individual functional characteristics appear to be modulated independently of one another and independently of the presence of an intratumor CSC niche.


Assuntos
Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/etiologia , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Nicho de Células-Tronco , Idoso , Animais , Biomarcadores , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia
9.
J Natl Cancer Inst ; 109(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634934

RESUMO

Background: We have an incomplete understanding of the differences between cancer stem cells (CSCs) in human papillomavirus-positive (HPV-positive) and -negative (HPV-negative) head and neck squamous cell cancer (HNSCC). The PI3K pathway has the most frequent activating genetic events in HNSCC (especially HPV-positive driven), but the differential signaling between CSCs and non-CSCs is also unknown. Methods: We addressed these unresolved questions using CSCs identified from 10 HNSCC patient-derived xenografts (PDXs). Sored populations were serially passaged in nude mice to evaluate tumorigenicity and tumor recapitulation. The transcription profile of HNSCC CSCs was characterized by mRNA sequencing, and the susceptibility of CSCs to therapy was investigated using an in vivo model. SOX2 transcriptional activity was used to follow the asymmetric division of PDX-derived CSCs. All statistical tests were two-sided. Results: CSCs were enriched by high aldehyde dehydrogenase (ALDH) activity and CD44 expression and were similar between HPV-positive and HPV-negative cases (percent tumor formation injecting ≤ 1x10(3) cells: ALDH(+)CD44(high) = 65.8%, ALDH(-)CD44(high) = 33.1%, ALDH(+)CD44(high) = 20.0%; and injecting 1x10(5) cells: ALDH(-)CD44(low) = 4.4%). CSCs were resistant to conventional therapy and had PI3K/mTOR pathway overexpression (GSEA pathway enrichment, P < .001), and PI3K inhibition in vivo decreased their tumorigenicity (40.0%-100.0% across cases). PI3K/mTOR directly regulated SOX2 protein levels, and SOX2 in turn activated ALDH1A1 (P < .001 013C and 067C) expression and ALDH activity (ALDH(+) [%] empty-control vs SOX2, 0.4% ± 0.4% vs 14.5% ± 9.8%, P = .03 for 013C and 1.7% ± 1.3% vs 3.6% ± 3.4%, P = .04 for 067C) in 013C and 067 cells. SOX2 enhanced sphere and tumor growth (spheres/well, 013C P < .001 and 067C P = .04) and therapy resistance. SOX2 expression prompted mesenchymal-to-epithelial transition (MET) by inducing CDH1 (013C P = .002, 067C P = .01), followed by asymmetric division and proliferation, which contributed to tumor formation. Conclusions: The molecular link between PI3K activation and CSC properties found in this study provides insights into therapeutic strategies for HNSCC. Constitutive expression of SOX2 in HNSCC cells generates a CSC-like population that enables CSC studies.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinase/genética , RNA Mensageiro/análise , Fatores de Transcrição SOXB1/genética , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Antígenos CD , Antineoplásicos/farmacologia , Caderinas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Divisão Celular , Proliferação de Células , Transformação Celular Neoplásica/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Papillomaviridae/isolamento & purificação , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Retinal Desidrogenase , Fatores de Transcrição SOXB1/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Esferoides Celulares , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma , Células Tumorais Cultivadas
10.
Cancer Res ; 75(6): 1021-34, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770290

RESUMO

Prostate cancer subtypes are poorly defined and functional validation of drivers of ETS rearrangement-negative prostate cancer has not been conducted. Here, we identified an ETS(-) subtype of aggressive prostate cancer (ERG(-)MAP3K7(del)CHD1(del)) and used a novel developmental model and a cell line xenograft model to show that cosuppression of MAP3K7 and CHD1 expression promotes aggressive disease. Analyses of publicly available prostate cancer datasets revealed that MAP3K7 and CHD1 were significantly codeleted in 10% to 20% of localized tumors and combined loss correlated with poor disease-free survival. To evaluate the functional impact of dual MAP3K7-CHD1 loss, we suppressed Map3k7 and/or Chd1 expression in mouse prostate epithelial progenitor/stem cells (PrP/SC) and performed tissue recombination experiments in vivo. Dual shMap3k7-shChd1 PrP/SC recombinants displayed massive glandular atypia with regions of prostatic intraepithelial neoplasia and carcinoma apparent. Combined Map3k7-Chd1 suppression greatly disrupted normal prostatic lineage differentiation; dual recombinants displayed significant androgen receptor loss, increased neuroendocrine differentiation, and increased neural differentiation. Clinical samples with dual MAP3K7-CHD1 loss also displayed neuroendocrine and neural characteristics. In addition, dual Map3k7-Chd1 suppression promoted E-cadherin loss and mucin production in recombinants. MAP3K7 and CHD1 protein loss also correlated with Gleason grade and E-cadherin loss in clinical samples. To further validate the phenotype observed in the PrP/SC model, we suppressed MAP3K7 and/or CHD1 expression in LNCaP prostate cancer cells. Dual shMAP3K7-shCHD1 LNCaP xenografts displayed increased tumor growth and decreased survival compared with shControl, shMAP3K7, and shCHD1 xenografts. Collectively, these data identify coordinate loss of MAP3K7 and CHD1 as a unique driver of aggressive prostate cancer development.


Assuntos
DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Neoplasias da Próstata/patologia , Animais , Caderinas/análise , Linhagem Celular Tumoral , Células Cultivadas , Progressão da Doença , Humanos , Masculino , Camundongos , Gradação de Tumores , Invasividade Neoplásica
11.
Endocr Relat Cancer ; 21(4): T147-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872510

RESUMO

Androgen receptor (AR) signaling is vital to the development and function of the prostate and is a key pathway in prostate cancer. AR is differentially expressed in the stroma and epithelium, with both paracrine and autocrine control throughout the prostate. Stromal-epithelial interactions within the prostate are commonly dependent on AR signaling and expression. Alterations in these pathways can promote tumorigenesis. AR is also expressed in normal and malignant mammary tissues. Emerging data indicate a role for AR in certain subtypes of breast cancer that has the potential to be exploited therapeutically. The aim of this review is to highlight the importance of these interactions in normal development and tumorigenesis, with a focus on the prostate and breast.


Assuntos
Androgênios/metabolismo , Mama/metabolismo , Células Epiteliais/metabolismo , Próstata/metabolismo , Células Estromais/metabolismo , Animais , Mama/crescimento & desenvolvimento , Humanos , Masculino , Neoplasias/metabolismo , Próstata/crescimento & desenvolvimento , Receptores Androgênicos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA