Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 462(7272): 514-7, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19940927

RESUMO

Homocitrate is a component of the iron-molybdenum cofactor in nitrogenase, where nitrogen fixation occurs. NifV, which encodes homocitrate synthase (HCS), has been identified from various diazotrophs but is not present in most rhizobial species that perform efficient nitrogen fixation only in symbiotic association with legumes. Here we show that the FEN1 gene of a model legume, Lotus japonicus, overcomes the lack of NifV in rhizobia for symbiotic nitrogen fixation. A Fix(-) (non-fixing) plant mutant, fen1, forms morphologically normal but ineffective nodules. The causal gene, FEN1, was shown to encode HCS by its ability to complement a HCS-defective mutant of Saccharomyces cerevisiae. Homocitrate was present abundantly in wild-type nodules but was absent from ineffective fen1 nodules. Inoculation with Mesorhizobium loti carrying FEN1 or Azotobacter vinelandii NifV rescued the defect in nitrogen-fixing activity of the fen1 nodules. Exogenous supply of homocitrate also recovered the nitrogen-fixing activity of the fen1 nodules through de novo nitrogenase synthesis in the rhizobial bacteroids. These results indicate that homocitrate derived from the host plant cells is essential for the efficient and continuing synthesis of the nitrogenase system in endosymbionts, and thus provide a molecular basis for the complementary and indispensable partnership between legumes and rhizobia in symbiotic nitrogen fixation.


Assuntos
Genes Bacterianos , Genoma de Planta/genética , Lotus/genética , Lotus/metabolismo , Fixação de Nitrogênio/genética , Rhizobium/metabolismo , Simbiose/genética , Azotobacter vinelandii , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Ácidos Cetoglutáricos/metabolismo , Lotus/enzimologia , Dados de Sequência Molecular , Mutação/genética , Oxo-Ácido-Liases/deficiência , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Ácidos Tricarboxílicos/metabolismo
2.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649703

RESUMO

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Assuntos
Extremidades , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Regeneração , Proteínas de Xenopus , Xenopus laevis , Animais , Proliferação de Células/genética , Extremidades/fisiologia , Edição de Genes , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Larva/genética , Regeneração/genética , Regeneração/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Masculino , Feminino
3.
Plant Cell Physiol ; 53(1): 225-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123791

RESUMO

Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.


Assuntos
Lotus/fisiologia , Proteínas de Membrana/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/fisiologia , Simbiose , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Lotus/genética , Lotus/microbiologia , Lotus/ultraestrutura , Proteínas de Membrana/genética , Mutação/genética , Fixação de Nitrogênio/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Simbiose/genética
4.
Genes Cells ; 13(6): 537-47, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18533003

RESUMO

Vps34, the sole PtdIns 3-kinase in yeast, is essential for autophagy. Here, we show that the lipid-kinase activity of Vps34 is required for autophagy, implying an essential role of its product PtdIns(3)P. The protein-kinase activity of Vps15, a regulatory subunit of the PtdIns 3-kinase complex, is also required for efficient autophagy. We monitored the distribution of PtdIns(3)P in living cells using a specific indicator, the 2xFYVE domain derived from mammalian Hrs. PtdIns(3)P was abundant at endosomes and on the vacuolar membrane during logarithmic growth phase. Under starvation conditions, we observed massive transport of PtdIns(3)P into the vacuole. This accumulation was dependent on the membrane dynamics of autophagy. Notably, PtdIns(3)P was highly enriched and delivered into the vacuole as a component of autophagosome membranes but not as a cargo enclosed within them, implying direct involvement of this phosphoinositide in autophagosome formation. We also found a possible enrichment of PtdIns(3)P on the inner autophagosomal membrane compared to the outer membrane. Based on these results we discuss the function of PtdIns(3)P in autophagy.


Assuntos
Autofagia , Fosfatidilinositol 3-Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/enzimologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae , Proteína VPS15 de Distribuição Vacuolar
5.
Nat Cell Biol ; 16(11): 1035-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25344753

RESUMO

Animal development fundamentally relies on the precise control, in space and time, of genome expression. Whereas we have a wealth of information about spatial patterning, the mechanisms underlying temporal control remain poorly understood. Here we show that Pri peptides, encoded by small open reading frames, are direct mediators of the steroid hormone ecdysone for the timing of developmental programs in Drosophila. We identify a previously uncharacterized enzyme of ecdysone biosynthesis, GstE14, and find that ecdysone triggers pri expression to define the onset of epidermal trichome development, through post-translational control of the Shavenbaby transcription factor. We show that manipulating pri expression is sufficient to either put on hold or induce premature differentiation of trichomes. Furthermore, we find that ecdysone-dependent regulation of pri is not restricted to epidermis and occurs over various tissues and times. Together, these findings provide a molecular framework to explain how systemic hormonal control coordinates specific programs of differentiation with developmental timing.


Assuntos
Arrestinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glutationa Transferase/metabolismo , Receptores de Esteroides/metabolismo , Animais , Arrestinas/genética , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Ecdisona/genética , Glutationa Transferase/genética , Mutação/genética , Receptores de Esteroides/genética , Transdução de Sinais/fisiologia , Transaldolase/genética , Transaldolase/metabolismo
6.
Int J Clin Exp Pathol ; 7(11): 7485-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25550784

RESUMO

Prorenin receptor (PRR) has been implicated in the onset and progression of various renal diseases, though its possible association with immunoglobulin A (IgA) nephropathy remains unclear. In the present study, we tried to clarify expression and pathophysiological significance of PRR in IgA nephropathy. We immunohistochemically assessed PRR levels in renal biopsy specimens from 48 patients with IgA nephropathy and evaluated its relevance to the clinical and pathological features of the disease. PRR was detected mainly in renal tubular cells, which was confirmed at the subcellular level using immunoelectron microscopy. The PRR-positive area (%PRR area) correlated with daily urinary protein, which is known to reflect disease severity (r=0.286, P=0.049). PRR levels were weaker in tubular cells bordering areas of severe interstitial fibrosis, where α-smooth muscle actin-positive myofibroblasts were present. We also used immunohistochemical detection of microtubule-associated protein-1 light chain 3 (LC3) and electron microscopy to assess autophagy, a cytoprotective mechanism downstream of PRR. We noted an apparent coincidence between autophagy activation in tubular cells and PRR expression in the same cells. Taken together, our findings suggest that renal expression of PRR in IgA nephropathy may be a compensatory response slowing disease progression by preventing tubular cell death and subsequent fibrosis through activation of cytoprotective autophagic machinery. Further studies using different type of kidney diseases could draw conclusion if the present finding is a generalized observation beyond IgA nephropathy.


Assuntos
Glomerulonefrite por IGA/metabolismo , Nefropatias/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Progressão da Doença , Feminino , Fibrose , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/cirurgia , Humanos , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Nefropatias/patologia , Nefropatias/cirurgia , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Nefrectomia , Adulto Jovem
7.
J Biol Chem ; 283(35): 23972-80, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18586673

RESUMO

Atg18 is essential for both autophagy and the regulation of vacuolar morphology. The latter process is mediated by phosphatidylinositol 3,5-bisphosphate binding, which is dispensable for autophagy. Atg18 also binds to phosphatidylinositol 3-phosphate (PtdIns(3)P) in vitro. Here, we investigate the relationship between PtdIns(3)P-binding of Atg18 and autophagy. Using an Atg18 variant, Atg18(FTTG), which is unable to bind phosphoinositides, we found that PtdIns(3)P binding of Atg18 is essential for full activity in both selective and nonselective autophagy. Atg18(FTTG) formed a complex with Atg2 in a normal manner, and Atg18-Atg2 complex formation occurred in cells in the absence of PtdIns(3)P, indicating that Atg18-Atg2 complex formation is independent of PtdIns(3)P-binding of Atg18. Atg18 localized to endosomes, the vacuolar membrane, and autophagic membranes, whereas Atg18(FTTG) did not localize to these structures. The localization of Atg2 to autophagic membranes was also lost in Atg18(FTTG) cells. These data indicate that PtdIns(3)P-binding of Atg18 is involved in directing the Atg18-Atg2 complex to autophagic membranes. Connection of a 2xFYVE domain, a specific PtdIns(3)P-binding domain, to the C terminus of Atg18(FTTG) restored the localization of Atg18-Atg2 to autophagic membranes and full autophagic activity, indicating that PtdIns(3)P-binding by Atg18 is dispensable for the function of the Atg18-Atg2 complex but is required for its localization. This also suggests that PtdIns(3)P does not act allosterically on Atg18. Taken together, Atg18 forms a complex with Atg2 irrespective of PtdIns(3)P binding, associates tightly to autophagic membranes by interacting with PtdIns(3)P, and plays an essential role.


Assuntos
Autofagia/fisiologia , Membrana Celular/metabolismo , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica/fisiologia , Proteínas Relacionadas à Autofagia , Membrana Celular/genética , Endossomos/genética , Endossomos/metabolismo , Proteínas de Membrana , Complexos Multiproteicos/genética , Fosfatos de Fosfatidilinositol/genética , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/genética , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA