Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Physiol Rev ; 100(2): 725-803, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670612

RESUMO

The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.


Assuntos
Sinalização do Cálcio , Mecanotransdução Celular , Nociceptividade , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/metabolismo , Sensação Térmica , Animais , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Células Quimiorreceptoras/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Mecanorreceptores/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Termorreceptores/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36378366

RESUMO

Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.


Assuntos
Antineoplásicos , Neuralgia , Humanos , Canais de Cátion TRPV/uso terapêutico , Hiperalgesia/tratamento farmacológico
3.
Neurobiol Dis ; 191: 106408, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199274

RESUMO

Excitotoxicity arises from unusually excessive activation of excitatory amino acid receptors such as glutamate receptors. Following an energy crisis, excitotoxicity is a major cause for neuronal death in neurological disorders. Many glutamate antagonists have been examined for their efficacy in mitigating excitotoxicity, but failed to generate beneficial outcome due to their side effects on healthy neurons where glutamate receptors are also blocked. In this study, we found that during chronic hypoxia there is upregulation and activation of a nonselective cation channel TRPM4 that contributes to the depolarized neuronal membrane potential and enhanced glutamate-induced calcium entry. TRPM4 is involved in modulating neuronal membrane excitability and calcium signaling, with a complex and multifaceted role in the brain. Here, we inhibited TRPM4 using a newly developed blocking antibody M4P, which could repolarize the resting membrane potential and ameliorate calcium influx upon glutamate stimulation. Importantly, M4P did not affect the functions of healthy neurons as the activity of TRPM4 channel is not upregulated under normoxia. Using a rat model of chronic hypoxia with both common carotid arteries occluded, we found that M4P treatment could reduce apoptosis in the neurons within the hippocampus, attenuate long-term potentiation impairment and improve the functions of learning and memory in this rat model. With specificity to hypoxic neurons, TRPM4 blocking antibody can be a novel way of controlling excitotoxicity with minimal side effects that are common among direct blockers of glutamate receptors.


Assuntos
Ácido Glutâmico , Canais de Cátion TRPM , Ratos , Animais , Ácido Glutâmico/metabolismo , Cálcio/metabolismo , Receptores de Glutamato/metabolismo , Neurônios/metabolismo , Hipóxia/metabolismo , Canais de Cátion TRPM/metabolismo
4.
Cell ; 139(3): 466-7, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19879836

RESUMO

All cells detect mechanical signals, but the underlying molecular mechanisms are unclear. In this issue of Cell, Sharif-Naeini et al. (2009) show that a candidate mechanosensing channel, TRPP2 (PKD2), unexpectedly acts as an inhibitor of a still-elusive stretch-activated cation channel in vascular smooth muscle cells.


Assuntos
Músculo Liso Vascular/fisiologia , Canais de Cátion TRPP/fisiologia , Animais , Camundongos , Miócitos de Músculo Liso , Canais de Cátion TRPP/química
5.
Physiol Rev ; 96(3): 911-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27252279

RESUMO

Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.


Assuntos
Canalopatias/metabolismo , Canais de Cátion TRPV/fisiologia , Animais , Canalopatias/genética , Humanos , Camundongos
6.
Eur Heart J ; 43(40): 4195-4207, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35822895

RESUMO

AIMS: Cardiac arrhythmias are a major factor in the occurrence of morbidity and sudden death in patients with cardiovascular disease. Disturbances of Ca2+ homeostasis in the heart contribute to the initiation and maintenance of cardiac arrhythmias. Extrasystolic increases in intracellular Ca2+ lead to delayed afterdepolarizations and triggered activity, which can result in heart rhythm abnormalities. It is being suggested that the Ca2+-activated nonselective cation channel TRPM4 is involved in the aetiology of triggered activity, but the exact contribution and in vivo significance are still unclear. METHODS AND RESULTS: In vitro electrophysiological and calcium imaging technique as well as in vivo intracardiac and telemetric electrocardiogram measurements in physiological and pathophysiological conditions were performed. In two distinct Ca2+-dependent proarrhythmic models, freely moving Trpm4-/- mice displayed a reduced burden of cardiac arrhythmias. Looking further into the specific contribution of TRPM4 to the cellular mechanism of arrhythmias, TRPM4 was found to contribute to a long-lasting Ca2+ overload-induced background current, thereby regulating cell excitability in Ca2+ overload conditions. To expand these results, a compound screening revealed meclofenamate as a potent antagonist of TRPM4. In line with the findings from Trpm4-/- mice, 10 µM meclofenamate inhibited the Ca2+ overload-induced background current in ventricular cardiomyocytes and 15 mg/kg meclofenamate suppressed catecholaminergic polymorphic ventricular tachycardia-associated arrhythmias in a TRPM4-dependent manner. CONCLUSION: The presented data establish that TRPM4 represents a novel target in the prevention and treatment of Ca2+-dependent triggered arrhythmias.


Assuntos
Canais de Cátion TRPM , Taquicardia Ventricular , Camundongos , Animais , Cálcio/metabolismo , Ácido Meclofenâmico/metabolismo , Arritmias Cardíacas , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo
7.
Rev Physiol Biochem Pharmacol ; 174: 81-156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29372329

RESUMO

Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.


Assuntos
Monóxido de Carbono/fisiologia , Sistema Cardiovascular , Gases , Sulfeto de Hidrogênio , Óxido Nítrico/fisiologia , Humanos , Canais Iônicos/fisiologia , Biogênese de Organelas , Transdução de Sinais
8.
Physiol Rev ; 97(4): 1233-1234, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794167
9.
Pflugers Arch ; 471(11-12): 1455-1466, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31664513

RESUMO

Reperfusion therapy is currently the gold standard treatment for acute ischemic stroke. However, reperfusion injuries such as oedema and haemorrhagic transformation largely limit the use of this potent treatment to a narrow time window. Recently, transient receptor potential melastatin 4 (TRPM4) channel has emerged as a potential target for vascular protection in stroke management. Non-specificity and side effects are major concerns for current TRPM4 blockers. The present study was undertaken to develop a novel TRPM4 blocker for stroke management. We report the generation of a TRPM4-specific antibody M4P which binds to a region close to the channel pore. M4P could inhibit TRPM4 current and downregulate TRPM4 surface expression, therefore prevent hypoxia-induced cell swelling. In the rat model of 3-h stroke reperfusion, application of M4P at 2 h after occlusion ameliorated reperfusion injury by improving blood-brain barrier integrity, and enhanced functional recovery. Our results demonstrate that TRPM4 blockade could attenuate reperfusion injury in stroke recanalization. When applied together with reperfusion treatments, TRPM4 blocking antibody has the potential to extend the therapeutic time window for acute ischemic stroke.


Assuntos
Anticorpos Monoclonais/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Nat Rev Neurosci ; 15(9): 573-89, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053448

RESUMO

Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.


Assuntos
Mamíferos/fisiologia , Sistema Nervoso Periférico/fisiologia , Sensação Térmica/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Vias Aferentes/fisiologia , Animais , Humanos , Modelos Moleculares
11.
Semin Cancer Biol ; 47: 154-167, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28627410

RESUMO

Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Sistemas CRISPR-Cas , DNA Mitocondrial , Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/efeitos dos fármacos , Humanos , Imunoterapia , Mitocôndrias/genética , Mutação , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo
12.
Am J Respir Cell Mol Biol ; 59(1): 87-95, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29393654

RESUMO

We previously described several ionic conductances in human pulmonary fibroblasts, including one activated by two structurally distinct TRPV4 (transient receptor potential, vanilloid-type, subtype 4)-channel agonists: 4αPDD (4α-phorbol-12,13-didecanoate) and GSK1016790A. However, the TRPV4-activated current exhibited peculiar properties: it developed slowly over many minutes, exhibited reversal potentials that could vary by tens of millivolts even within a given cell, and was not easily reversed by subsequent addition of two distinct TRPV4-selective blockers (RN-1734 and HC-067047). In this study, we characterized that conductance more carefully. We found that 4αPDD stimulated a delayed release of ATP into the extracellular space, which was reduced by genetic silencing of pannexin expression, and that the 4αPDD-evoked current could be blocked by apyrase (which rapidly degrades ATP) or by the P2Y purinergic receptor/channel blocker pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and could be mimicked by exogenous addition of ATP. In addition, we found that the 4αPDD-evoked current was blocked by pretreatment with RN-1734 or HC-067047, by Gd3+ or La3+, or by two distinct blockers of pannexin channels (carbenoxolone and probenecid), but not by a blocker of connexin hemichannels (flufenamic acid). We also found expression of TRPV4- and pannexin-channel proteins. 4αPDD markedly increased calcium flashing in our cells. The latter was abrogated by the P2Y channel blocker PPADS, and the 4αPDD-evoked current was eliminated by loading the cytosol with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or by inhibiting Ca2+/calmodulin-sensitive kinase II using KN93. Altogether, we interpret these findings as suggesting that 4αPDD triggers the release of ATP via pannexin channels, which in turn acts in an autocrine and/or paracrine fashion to stimulate PPADS-sensitive purinergic receptors on human pulmonary fibroblasts.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Fibroblastos/metabolismo , Pulmão/citologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Cátion TRPV/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cálcio/metabolismo , Feminino , Humanos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Ésteres de Forbol/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fatores de Tempo
13.
Rev Physiol Biochem Pharmacol ; 170: 101-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744346

RESUMO

The heart works without resting, requiring enormous amounts of energy to continuously pump blood throughout the body. Because of its considerable energy requirements, the heart is vulnerable to oxidative stress caused by the generation of endogenous reactive oxygen species (ROS). Therefore, the heart has effective regulatory and adaptive mechanisms to protect against oxidative stress. Inherited or acquired mitochondrial respiratory chain dysfunction disrupts energy metabolism and causes excessive ROS production and oxidative stress. The physiological cardiac response to oxidative stress can strengthen the heart, but pathological cardiac responses or altered regulatory mechanisms can cause heart disease. Therefore, mitochondria-targeted antioxidants have been tested and some are used clinically. In this review, we briefly discuss the role of mitochondrial DNA mutations, mitochondrial dysfunction, and ROS generation in the development of heart disease and recent developments in mitochondria-targeted antioxidants for the treatment of heart disease.


Assuntos
Cardiopatias/fisiopatologia , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/fisiologia , Estresse Oxidativo/fisiologia , Animais , Humanos
14.
Pharmacol Rev ; 66(3): 676-814, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24951385

RESUMO

The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.


Assuntos
Terapia de Alvo Molecular , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Desenho de Fármacos , Humanos , Mutação , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética
15.
J Physiol ; 594(24): 7327-7340, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27779758

RESUMO

KEY POINTS: Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca2+ ]i ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca2+ ]i that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4-/- mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus. ABSTRACT: The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca2+ ]i of JG cells. The inverse relationship between [Ca2+ ]i and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca2+ ]i transient in JG cells, is however, unknown. We observed that [Ca2+ ]i transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4-/- mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4-/- mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca2+ in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure.


Assuntos
Sistema Justaglomerular/metabolismo , Mecanotransdução Celular/fisiologia , Renina/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Aldosterona/sangue , Animais , Cálcio/fisiologia , Linhagem Celular Tumoral , Masculino , Camundongos Knockout , Pressão , Renina/sangue , Renina/metabolismo , Canais de Cátion TRPV/genética
16.
J Biol Chem ; 290(20): 12964-74, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25829496

RESUMO

TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.


Assuntos
Canais de Cátion TRPV/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Triptofano/química , Triptofano/genética , Triptofano/metabolismo
17.
Pflugers Arch ; 468(3): 371-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26739710

RESUMO

The volume-regulated anion channel (VRAC), also known as the volume-sensitive outwardly rectifying (VSOR) anion channel or the volume-sensitive organic osmolyte/anion channel (VSOAC), is essential for cell volume regulation after swelling in most vertebrate cell types studied to date. In addition to its role in cell volume homeostasis, VRAC has been implicated in numerous other physiological and pathophysiological processes, including cancer, ischemic brain edema, cell motility, proliferation, angiogenesis, programmed cell death, and excitotoxic glutamate release. Although VRAC has been extensively biophysically, pharmacologically, and functionally characterized, its molecular identity was highly controversial until the recent identification of the leucine-rich repeats containing 8A (LRRC8A) protein as essential for the VRAC current in multiple cell types and a likely pore-forming subunit of VRAC. Members of this distantly pannexin-1-related protein family form heteromers, and in addition to LRRC8A, at least another LRRC8 family member is required for the formation of a functional VRAC. This review summarizes the biophysical and pharmacological properties of VRAC, highlights its main physiological functions and pathophysiological implications, and outlines the search for its molecular identity.


Assuntos
Ânions/metabolismo , Tamanho Celular , Canais Iônicos/metabolismo , Potenciais de Ação , Animais , Apoptose , Humanos , Transporte de Íons , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia
18.
Pflugers Arch ; 468(9): 1595-607, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364478

RESUMO

TRPV4 is a polymodal cation channel expressed in osmosensitive neurons of the hypothalamus and in the mammalian nephron. The segmental distribution and role(s) of TRPV4 in osmoregulation remain debated. We investigated the renal distribution pattern of TRPV4 and the functional consequences of its disruption in mouse models. Using qPCR on microdissected segments, immunohistochemistry, and a LacZ reporter mouse, we found that TRPV4 is abundantly expressed in the proximal tubule, the late distal convoluted tubule, and throughout the connecting tubule and collecting duct, including principal and intercalated cells. TRPV4 was undetectable in the glomeruli and thick ascending limb and weakly abundant in the early distal convoluted tubule. Metabolic studies in Trpv4 (+/+) and Trpv4 (-/-) littermates revealed that the lack of TRPV4 did not influence activity, food and water intake, renal function, and urinary concentration at baseline. The mice showed a similar response to furosemide, water loading and deprivation, acid loading, and dietary NaCl restriction. However, Trpv4 (-/-) mice showed a significantly lower vasopressin synthesis and release after water deprivation, with a loss of the positive correlation between plasma osmolality and plasma vasopressin levels, and a delayed water intake upon acute administration of hypertonic saline. Specific activation of TRPV4 in primary cultures of proximal tubule cells increased albumin uptake, whereas no effect of TRPV4 deletion could be observed at baseline. These data reveal that, despite its abundant expression in tubular segments, TRPV4 does not play a major role in the kidney or is efficiently compensated when deleted. Instead, TRPV4 is critical for the release of vasopressin, the sensation of thirst, and the central osmoregulation.


Assuntos
Túbulos Renais Proximais/metabolismo , Osmorregulação , Canais de Cátion TRPV/metabolismo , Vasopressinas/sangue , Albuminas/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Diuréticos/farmacologia , Furosemida/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Sódio na Dieta/metabolismo , Canais de Cátion TRPV/genética , Vasopressinas/metabolismo
19.
Pflugers Arch ; 468(4): 593-607, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26631168

RESUMO

TRPM4 is a calcium-activated but calcium-impermeable non-selective cation (CAN) channel. Previous studies have shown that TRPM4 is an important regulator of Ca(2+)-dependent changes in membrane potential in excitable and non-excitable cell types. However, its physiological significance in neurons of the central nervous system remained unclear. Here, we report that TRPM4 proteins form a CAN channel in CA1 neurons of the hippocampus and we show that TRPM4 is an essential co-activator of N-methyl-D-aspartate (NMDA) receptors (NMDAR) during the induction of long-term potentiation (LTP). Disrupting the Trpm4 gene in mice specifically eliminates NMDAR-dependent LTP, while basal synaptic transmission, short-term plasticity, and NMDAR-dependent long-term depression are unchanged. The induction of LTP in Trpm4 (-/-) neurons was rescued by facilitating NMDA receptor activation or post-synaptic membrane depolarization. Accordingly, we obtained normal LTP in Trpm4 (-/-) neurons in a pairing protocol, where post-synaptic depolarization was applied in parallel to pre-synaptic stimulation. Taken together, our data are consistent with a novel model of LTP induction in CA1 hippocampal neurons, in which TRPM4 is an essential player in a feed-forward loop that generates the post-synaptic membrane depolarization which is necessary to fully activate NMDA receptors during the induction of LTP but which is dispensable for the induction of long-term depression (LTD). These results have important implications for the understanding of the induction process of LTP and the development of nootropic medication.


Assuntos
Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais Sinápticos , Canais de Cátion TRPM/metabolismo , Animais , Região CA1 Hipocampal/citologia , Células Cultivadas , Retroalimentação Fisiológica , Camundongos , Neurônios/fisiologia , Canais de Cátion TRPM/genética
20.
Pflugers Arch ; 468(8): 1299-309, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27343012

RESUMO

Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that has been linked to autosomal recessive non-syndromic mental retardation. Several key findings suggest diverse roles of CRBN, including its regulation of the large-conductance calcium- and voltage-activated potassium (BKCa) channels, regulation of thalidomide-binding proteins, and mediation of lenalidomide treatment in multiple myeloma. Recent studies also indicate that CRBN is involved in energy metabolism and negatively regulates AMP-activated protein kinase signaling. Mice with genetic depletion of CRBN are resistant to various stress conditions including a high-fat diet, endoplasmic reticulum stress, ischemia/reperfusion injury, and alcohol-related liver damage. In this review, we discuss the various roles of CRBN in human health and disease and suggest avenues for further research to enhance our basic knowledge and clinical application of CRBN.


Assuntos
Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA