RESUMO
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive fungal diseases of wheat. Cultivated einkorn (Triticum monococcum L. ssp. monococcum, 2n = 2x = 14, AmAm), one of the founder crops of agriculture, harbors unexploited genetic sources for wheat improvement. An advanced wheat line, Z15-1949, with 42 chromosomes, selected from the hybrids of Pst-susceptible common wheat cultivar Crocus and resistant T. monococcum accession 10-1, exhibits high resistance to a mixture of the prevalent Chinese Pst races. Genetic analysis on F1, F2, and F2:3 generations of the cross between Z15-1949 and Pst-susceptible common wheat SY95-71 indicated that the resistance of Z15-1949 was conferred by a recessive gene, tentatively designated as YrZ15-1949. This gene was mapped to the short arm of chromosome 7D using the Wheat 55K single nucleotide polymorphism array, flanked by markers KASP-1949-2 and KASP-1949-10 within a 3.3-cM genetic interval corresponding to a 1.12-Mb physical region in the Chinese Spring reference genome V2.0. The gene differs from previously reported Yr genes on 7D based on their physical positions and is probably a novel gene. YrZ15-1949 would be a valuable resource for developing Pst-resistant wheat cultivars, and the linked markers could be used for marker-assisted selection.
Assuntos
Basidiomycota , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Triticum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Basidiomycota/fisiologia , Basidiomycota/genética , Genes Recessivos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Marcadores Genéticos/genéticaRESUMO
Leaf rolling is regarded as an important morphological trait in wheat breeding. Moderate leaf rolling is helpful to keep leaves upright and improve the photosynthesis of plants, leading to increased yield. However, studies on the identification of genomic regions/genes associated with rolling leaf have been reported less frequently in wheat. In this study, a rolling leaf mutant, T73, which has paired spikelets, dwarfism, and delayed heading traits, was obtained from a common wheat landrace through ethyl methanesulfonate mutagenesis. The rlT73 mutation caused an increase in the number of epidermal cells on the abaxial side and the shrinkage of bulliform cells on the adaxial side, leading to an adaxially rolling leaf phenotype. Genetic analysis showed that the rolling leaf phenotype was controlled by a single recessive gene. Further Wheat55K single nucleotide polymorphism array-based bulked segregant analysis and molecular marker mapping delimited rlT73 to a physical interval of 300.29-318.33 Mb on the chromosome arm 1BL in the Chinese Spring genome. We show that a point mutation at the miRNA165/166 binding site of the HD zipper class III transcription factor on 1BL altered its transcriptional level, which may be responsible for the rolling leaf phenotype. Our results suggest the important role of rlT73 in regulating wheat leaf development and the potential of miRNA-based gene regulation for crop trait improvement.
Assuntos
Melhoramento Vegetal , Triticum , Alelos , Triticum/genética , Mutação , CromossomosRESUMO
BACKGROUND: Weeds are not only economically important but also fascinating models for studying the adaptation of species in human-mediated environments. Aegilops tauschii is the D-genome donor species of common wheat but is also a weed that influences wheat production. How shading stress caused by adjacent wheat plants affects Ae. tauschii growth is a fundamental scientific question but is also important in agriculture, such as for weed control and wheat breeding. RESULT: The present study indicated that shade avoidance is a strategy of Ae. tauschii in response to shading stress. Ae. tauschii plants exhibited growth increases in specific organs, such as stem and leaf elongation, to avoid shading. However, these changes were accompanied by sacrificing the growth of other parts of the plants, such as a reduction in tiller number. The two reverse phenotype responses seem to be formed by systemically regulating the expression of different genes. Fifty-six genes involved in the regulation of cell division and cell expansion were found to be downregulated, and one key upstream negative regulator (RPK2) of cell division was upregulated under shading stress. On the other hand, the upregulated genes under shading stress were mainly enriched in protein serine/threonine kinase activity and carbon metabolism, which are associated with cell enlargement, signal transduction and energy supply. The transcription factor WRKY72 may be important in regulating genes in response to shading stress, which can be used as a prior candidate gene for further study on the genetic regulation of shade avoidance. CONCLUSIONS: This study sheds new light on the gene expression changes and molecular processes involved in the response and avoidance of Ae. tauschii to shading stress, which may aid more effective development of shading stress avoidance or cultivars in wheat and other crops in the future.
Assuntos
Aegilops , Humanos , Aegilops/genética , Triticum , Transcriptoma , Melhoramento Vegetal , FenótipoRESUMO
KEY MESSAGE: A novel major adult-plant stripe rust resistance QTL derived from cultivated emmer wheat was mapped to a 123.6-kb region on wheat chromosome 2BL. Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat. Identification of new sources of resistance and their utilization in breeding programs is the effectively control strategy. The objective of this study was to identify and genetically characterize the stripe rust resistance derived from the cultivated emmer accession AS286. A recombinant inbred line population, developed from a cross between the susceptible durum wheat line langdon and AS286, was genotyped using the Wheat55K single nucleotide polymorphism array and evaluated in field conditions with a mixture of the prevalent Chinese Pst races (CYR32, CYR33, CYR34, Zhong4, and HY46) and in growth chamber with race CYR34. Three QTLs conferring resistance were mapped on chromosomes 1BS, 2BL, and 5BL, respectively. The QYrAS286-1BS and QYrAS286-2BL were stable with major effects, explaining 12.91% to 18.82% and 11.31% to 31.43% of phenotypic variation, respectively. QYrAS286-5BL was only detected based on growth chamber seedling data. RILs harboring both QYrAS286-1BS and QYrAS286-2BL showed high levels of stripe rust resistance equal to the parent AS286. The QYrAS286-2BL was only detected at the adult-plant stage, which is different from previously named Yr genes and inherited as a single gene. It was further mapped to a 123.6-kb region using KASP markers derived from SNPs identified by bulked segregant RNA sequencing (BSR-Seq). The identified loci enrich our stripe rust resistance gene pool, and the flanking markers developed here could be useful in marker-assisted selection for incorporating QYrAS286-2BL into wheat cultivars.
Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Triticum/genética , Triticum/microbiologia , Melhoramento Vegetal , Locos de Características Quantitativas , Genótipo , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
Triticum boeoticum (2n = 2x = 14, AbAb) is an important relative of wheat. This species tolerates many different types of environmental stresses, including drought, salt, and pathogenic infection, and is lower in dietary fiber and higher in antioxidants, protein (15 to 18%), lipids, and trace elements than common wheat. However, the gene transfer rate from this species to common wheat is low, and few species-specific molecular markers are available. In this study, the wheat-T. boeoticum substitution line Z1889, derived from a cross between the common wheat cultivar Crocus and T. boeoticum line G52, was identified using multicolor fluorescence in situ hybridization, multicolor genomic in situ hybridization, and a 55K single-nucleotide polymorphism array. Z1889 was revealed to be a 4Ab (4B) substitution line with a high degree of resistance to stripe rust pathogen strains prevalent in China. In addition, 22 4Ab chromosome-specific molecular markers and 11 T. boeoticum genome-specific molecular markers were developed from 1,145 4Ab chromosome-specific fragments by comparing the sequences generated by specific-length amplified fragment sequencing, with an efficiency of up to 55.0%. Furthermore, the specificity of these markers was verified in four species containing the Ab genome. These markers not only can be used for the detection of the 4Ab chromosome but also provide a basis for molecular marker-assisted, selection-based breeding in wheat.
Assuntos
Basidiomycota , Triticum , Triticum/genética , Hibridização in Situ Fluorescente , Resistência à Doença/genética , Melhoramento Vegetal , Basidiomycota/genética , Marcadores GenéticosRESUMO
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases in wheat production. Pyramiding of adult-plant resistance (APR) genes is a promising strategy to increase durability of resistance. The stripe rust resistance (R) genes Yr18, Yr28, and Yr36 encode different protein families which confer partial resistance to a broad array of P. striiformis f. sp. tritici races. Here, we developed BC3F5 wheat lines representing all possible combinations of Yr18, Yr28, and Yr36 in a genetic background of the highly P. striiformis f. sp. tritici-susceptible wheat line SY95-71 that is widely used in stripe rust analysis. These lines enabled us to accurately evaluate these genes singly and in combination in a common genetic background. The adult plant resistance experiments were analyzed in the field, where stripe rust epidemics occurred frequently. The field results indicated that these partial R genes act additively in enhancing the levels of resistance, and a minimum of two-gene combinations can generate adequate stripe rust resistance. The Yr28 + Yr36 and Yr18 + Yr28 + Yr36 combinations also showed adequate resistance at the seedling stage, implying that APR gene pyramiding can achieve all-stage resistance. Meanwhile, the three genes were simultaneously introduced into elite wheat lines through gene-based marker selection. Elite lines exhibited strong all-stage resistance to stripe rust. This work provides valuable insights and resources for developing durable P. striiformis f. sp. tritici-resistant varieties and for elucidating the regulation mechanism of partial R gene pyramiding.
Assuntos
Basidiomycota , Triticum , Triticum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Basidiomycota/fisiologia , Genes de Plantas , Marcadores GenéticosRESUMO
Spikelet number and grain number per spike are two crucial and correlated traits for grain yield in wheat. Photoperiod-1 (Ppd-1) is a key regulator of inflorescence architecture and spikelet formation in wheat. In this study, near-isogenic lines derived from the cross of a synthetic hexaploid wheat and commercial cultivars generated by double top-cross and two-phase selection were evaluated for the number of days to heading and other agronomic traits. The results showed that heading time segregation was conferred by a single incomplete dominant gene PPD-D1, and the 2 kb insertion in the promoter region was responsible for the delay in heading. Meanwhile, slightly delayed heading plants and later heading plants obviously have advantages in grain number and spikelet number of the main spike compared with early heading plants. Utilization of PPD-D1 photoperiod sensitivity phenotype as a potential means to increase wheat yield potential.
Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Poaceae/genética , Grão Comestível/genética , FenótipoRESUMO
Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof.
Assuntos
Melhoramento Vegetal , Triticum , Genes Dominantes , Poaceae , Triticum/genética , ChinaRESUMO
KEY MESSAGE: A novel recessive gene YrZ15-1370 derived from Triticum boeoticum confers adult-plant resistance to wheat stripe rust. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat globally and resistance is the effectively control strategy. Triticum boeoticum Boiss (T. monococcum L. ssp. aegilopoides, 2n = 2x = 14, AbAb) accession G52 confers a high level of adult-plant resistance against a mixture of the Chinese prevalent Pst races. To transfer the resistance to common wheat, a cross was made between G52 and susceptible common wheat genotype Crocus. A highly resistant wheat-T. boeoticum introgression line Z15-1370 (F5 generation) with 42 chromosomes was selected cytologically and by testing with Pst races. F1, F2, and F2:3 generations of the cross between Z15-1370 and stripe rust susceptible common wheat Mingxian169 were developed. Genetic analysis revealed that the resistance in Z15-1370 was controlled by a single recessive gene, tentatively designated YrZ15-1370. Using the bulked segregant RNA-Seq (BSR-Seq) analysis, YrZ15-1370 was mapped to chromosome 6AL and flanked by markers KASP1370-3 and KASP-1370-5 within a 4.3 cM genetic interval corresponding to 1.8 Mb physical region in the Chinese Spring genome, in which a number of disease resistance-related genes were annotated. YrZ15-1370 differed from previously Yr genes identified on chromosome 6A based on its position and/or origin. The YrZ15-1370 would be a valuable resource for wheat resistance improvement and the flanking markers developed here could be useful tools for marker-assisted selection (MAS) in breeding and further cloning the gene.
Assuntos
Basidiomycota/fisiologia , Resistência à Doença/imunologia , Genes Recessivos , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , RNA-Seq , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/microbiologiaRESUMO
BACKGROUND: In contrast to most animal species, polyploid plant species are quite tolerant of aneuploidy. Here, the global transcriptome of four aneuploid derivatives of a synthetic hexaploid wheat line was acquired, with the goal of characterizing the relationship between gene copy number and transcript abundance. RESULTS: For most of the genes mapped to the chromosome involved in aneuploidy, the abundance of transcripts reflected the gene copy number. Aneuploidy had a greater effect on the strength of transcription of genes mapped to the chromosome present in a noneuploid dose than on that of genes mapped elsewhere in the genome. Overall, changing the copy number of one member of a homeologous set had little effect on the abundance of transcripts generated from the set of homeologs as a whole, consistent with the tolerance of aneuploidy exhibited by allopolyploids, whether in the form of a chromosomal deficit (monosomy) or chromosomal excess (trisomy). CONCLUSIONS: Our findings shed new light on the genetic regulation of homeoallele transcription and contribute to a deeper understanding of allopolyploid genome evolution, with implications for the breeding of polyploid crops.
Assuntos
Aneuploidia , Poliploidia , Transcriptoma , Triticum/genética , Dosagem de GenesRESUMO
KEY MESSAGE: Common wheat landrace Kaixian-luohanmai carries a gene(s) that promotes homoeologous chromosome pairing. A major QTL responsible for this effect was mapped to chromosome arm 3AL. Polyhaploid hybrids of a Chinese common wheat landrace Kaixian-luohanmai (KL) and related species show increased levels of chromosome pairing. Over 90% of that pairing is between homoeologous arms of wheat chromosomes, with a very strong preference for pairing between homoeologs from genomes A and D. Wheat-rye pairing was also observed at low frequency. Two mapping populations were created from the hybrids of KL with two wheat genotypes top crossed to rye. Mean chiasmata numbers per plant were used as phenotypic data. Wheat 660 K and 15 K SNP arrays, DArT markers and SSR markers were used for genotyping of the top-cross ABDR hybrids. One major QTL, named QPh.sicau-3A, for increased homoeologous pairing was detected on chromosome arm 3AL, and it was responsible for ca. 16% of the total variation. This QTL was located in the interval 696-725 Mb in the Chinese Spring reference genome. SNP markers closely linked with QPh.sicau-3A were converted to KASP markers and validated for marker-assisted selection.
Assuntos
Mapeamento Cromossômico , Pareamento Cromossômico , Locos de Características Quantitativas , Triticum/genética , Cromossomos de Plantas , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
KEY MESSAGE: Introgressing one-eighth of synthetic hexaploid wheat genome through a double top-cross plus a two-phase selection is an effective strategy to develop high-yielding wheat varieties. The continued expansion of the world population and the likely onset of climate change combine to form a major crop breeding challenge. Genetic advances in most crop species to date have largely relied on recombination and reassortment within a relatively narrow gene pool. Here, we demonstrate an efficient wheat breeding strategy for improving yield potentials by introgression of multiple genomic regions of de novo synthesized wheat. The method relies on an initial double top-cross (DTC), in which one parent is synthetic hexaploid wheat (SHW), followed by a two-phase selection procedure. A genotypic analysis of three varieties (Shumai 580, Shumai 969 and Shumai 830) released from this program showed that each harbors a unique set of genomic regions inherited from the SHW parent. The first two varieties were generated from very small populations, whereas the third used a more conventional scale of selection since one of bread wheat parents was a pre-breeding material. The three varieties had remarkably enhanced yield potential compared to those developed by conventional breeding. A widely accepted consensus among crop breeders holds that introducing unadapted germplasm, such as landraces, as parents into a breeding program is a risky proposition, since the size of the breeding population required to overcome linkage drag becomes too daunting. However, the success of the proposed DTC strategy has demonstrated that novel variation harbored by SHWs can be accessed in a straightforward, effective manner. The strategy is in principle generalizable to any allopolyploid crop species where the identity of the progenitor species is known.
Assuntos
Pão , Pool Gênico , Melhoramento Vegetal , Poliploidia , Triticum/genética , Alelos , Cruzamentos Genéticos , Genes de Plantas , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genéticaRESUMO
BACKGROUND: Aegilops tauschii is the donor of the bread wheat D genome. Based on spike morphology, the taxon has conventionally been subdivided into ssp. tauschii and ssp. strangulata. The present study was intended to address the poor match between this whole plant morphology-based subdivision and genetic relationships inferred from genotyping by fluorescence in situ hybridization karyotyping a set of 31 Ae. tauschii accessions. RESULTS: The distribution of sites hybridizing to the two probes oligo-pTa-535 and (CTT)10 split the Ae. tauschii accessions into two clades, designated Dt and Ds, which corresponded perfectly with a previously assembled phylogeny based on marker genotype. The Dt cluster was populated exclusively by ssp. tauschii accessions, while the Ds cluster harbored both ssp. strangulata and morphologically intermediate accessions. As a result, it is proposed that Ae. tauschii ssp. tauschii is restricted to carriers of the Dt karyotype: their spikelets are regularly spaced along the rachis, at least in the central portion of their spike. Accessions classified as Ae. tauschii ssp. strangulata carry the Ds karyotype; their spikelets are irregularly spaced. Based on this criterion, forms formerly classified as ssp. tauschii var. meyeri have been re-designated ssp. strangulata var. meyeri. CONCLUSIONS: According to the reworking of the taxon, the bread wheat D genome was most probably donated by ssp. strangulata var. meyeri. Chromosomal differentiation reveals intra-species taxon of Ae. tauschii. Ae. tauschii ssp. tauschii has more distant relationship with breed wheat than ssp. strangulata and can be used for breeding improving effectively.
Assuntos
Genoma de Planta , Poaceae/genética , Hibridização in Situ Fluorescente , Cariotipagem , Sondas de Oligonucleotídeos , Poaceae/anatomia & histologia , Poaceae/classificaçãoRESUMO
BACKGROUND: The formation of an allopolyploid is a two step process, comprising an initial wide hybridization event, which is later followed by a whole genome doubling. Both processes can affect the transcription of homoeologues. Here, RNA-Seq was used to obtain the genome-wide leaf transcriptome of two independent Triticum turgidum × Aegilops tauschii allotriploids (F1), along with their spontaneous allohexaploids (S1) and their parental lines. The resulting sequence data were then used to characterize variation in homoeologue transcript abundance. RESULTS: The hybridization event strongly down-regulated D-subgenome homoeologues, but this effect was in many cases reversed by whole genome doubling. The suppression of D-subgenome homoeologue transcription resulted in a marked frequency of parental transcription level dominance, especially with respect to genes encoding proteins involved in photosynthesis. Singletons (genes where no homoeologues were present) were frequently transcribed at both the allotriploid and allohexaploid plants. CONCLUSIONS: The implication is that whole genome doubling helps to overcome the phenotypic weakness of the allotriploid, restoring a more favourable gene dosage in genes experiencing transcription level dominance in hexaploid wheat.
Assuntos
Genoma de Planta/genética , Hibridização Genética , Poliploidia , Homologia de Sequência do Ácido Nucleico , Triticum/genética , Regulação para Baixo/genética , Fenótipo , RNA Mensageiro/genéticaRESUMO
KEY MESSAGE: A stripe rust resistance gene YrZH22 was mapped by combined BSR-Seq and comparative genomics analyses to a 5.92 centimorgan (cM) genetic interval spanning a 4 Mb physical genomic region on wheat chromosome 4BL1. Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases of wheat and severely threatens wheat production worldwide. The widely grown Chinese wheat cultivar Zhoumai 22 is highly resistant to the current prevailing PST race CYR34 (V26). Genetic analysis of F5:6 and F6:7 recombinant inbred line (RIL) populations indicated that adult-plant stripe rust resistance in Zhoumai 22 is controlled by a single gene, temporarily designated YrZH22. By applying bulked segregant RNA-Seq (BSR-Seq), 7 SNP markers were developed and SNP mapping showed that YrZH22 is located between markers WGGB105 and WGGB112 on chromosome arm 4BL. The corresponding genomic regions of the Chinese Spring 4BL genome assembly and physical map of Aegilops tauschii 4DL were selected for comparative genomics analyses to develop nine new polymorphic markers that were used to construct a high-resolution genetic linkage map of YrZH22. YrZH22 was delimited in a 5.92 cM genetic interval between markers WGGB133 and WGGB146, corresponding to 4.1 Mb genomic interval in Chinese Spring 4BL and a 2.2 Mb orthologous genomic region in Ae. tauschii 4DL. The genetic linkage map of YrZH22 will be valuable for fine mapping and positional cloning of YrZH22, and can be used for marker-assisted selection in wheat breeding.
Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , China , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Ligação Genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologiaRESUMO
Aegilops variabilis (UUSvSv), an important sources for wheat improvement, originated from chromosome doubling of a natural hybrid between Ae. umbellulata (UU) with Ae. longissima (SlSl). The Ae. variabilis karyotype was poorly characterized by fluorescent in situ hybridization (FISH). The FISH probe combination of pSc119.2, pTa71 and pTa-713 identified each of the 14 pairs of Ae. variabilis chromosomes. Our FISH ideogram was further used to detect an Ae. variabilis chromosome carrying stripe rust resistance in the background of wheat lines developed from crosses of the stripe rust susceptible bread wheat cultivar Yiyuan 2 with a resistant Ae. variabilis accession. Among the 15 resistant BC1F7 lines, three were 2Sv + 4Sv addition lines (2n = 46) and 12 were 2Sv(2B) or 2Sv(2D) substitution lines that were confirmed with SSR markers. SSR marker gwm148 can be used to trace 2Sv in common wheat background. Chromosome 2Sv probably carries gametocidal(Gc) gene(s) since cytological instability and chromosome structural variations, including non-homologous translocations, were observed in some lines with this chromosome. Due to the effects of photoperiod genes, substitution lines 2Sv(2D) and 2Sv(2B) exhibited late heading with 2Sv(2D) lines being later than 2Sv(2B) lines. 2Sv(2D) substitution lines were also taller and exhibited higher spikelet numbers and longer spikes.
RESUMO
KEY MESSAGE: This study provides a link between a de novo gene and novel phenotype in wheat-rye hybrids that can be used as a model for induced de novo genetic variation. Wide hybridization can produce de novo DNA variation that may cause novel phenotypes. However, there is still a lack of specific links between changed genes and novel phenotypes in wide hybrids. The well-studied high-molecular-weight glutenin subunit (HMW-GS) genes in tribe Triticeae provide a useful model for addressing this issue. In this study, we investigated the feasibility of a wheat-rye hybridization method for inducing de novo phenotypes using the Glu-1Dx2.2 subunit as an example. We developed three hexaploid wheat lines with normal fertility and a Glu-1Dx2.2 variant, named Glu-1Dx2.2 (v) , derived from three F1 hybrids. The wild-type Glu-1Dx2.2 has two direct repeats of 295 bp length separated by an intervening 101 bp in its central repetitive region. In the mutant Glu-1Dx2.2 (v) , one copy of the repeats and the intervening sequence were deleted, probably through homology-dependent illegitimate recombination (IR). This study provides a direct link between a de novo allele and novel phenotype. Our results indicate that the wheat-rye method may be a useful tool to induce de novo genetic variations that broaden the genetic diversity for wheat improvement.
Assuntos
Glutens/genética , Hibridização Genética , Secale/genética , Triticum/genética , Alelos , Clonagem Molecular , DNA de Plantas/genética , Fenótipo , Análise de Sequência de DNARESUMO
Anthocyanins are plant secondary metabolites belonging to the polyphenol class of natural water-soluble phytopigments. The accumulation of anthocyanins in different plant tissues can improve plant survival under adverse conditions. In addition, plants with the resulting colorful morphology can be utilized as landscape plants. Triticum boeoticum (syn. Triticum monococcum ssp. aegilopoides, 2n=2x=14, AbAb) serves as a valuable genetic resource for the improvement of its close relative common wheat in terms of enhancing resilience to various biotic and abiotic stresses. In our previous study, the EMS-mutagenized mutant Z2921 with a red glume, stem, and rachis was generated from T. boeoticum G52, which has a green glume, stem, and rachis. In this study, the F1, F2, and F2:3 generations of a cross between mutant-type Z2921 and wild-type G52 were developed. A single recessive gene, tentatively designated RgM4G52, was identified in Z2921 via genetic analysis. Using bulked segregant exome capture sequencing (BSE-Seq) analysis, RgM4G52 was mapped to chromosome 6AL and was flanked by the markers KASP-58 and KASP-26 within a 3.40-cM genetic interval corresponding to 1.71-Mb and 1.61-Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Triticum boeoticum (TA299) reference genomes, respectively, in which seven and four genes related to anthocyanin synthesis development were annotated. Unlike previously reported color morphology-related genes, RgM4G52 is a recessive gene that can simultaneously control the color of glumes, stems, and rachis in wild einkorn. In addition, a synthetic Triticum dicoccum-T. boeoticum amphiploid Syn-ABAb-34, derived from the colchicine treatment of F1 hybrids between tetraploid wheat PI 352367 (T. dicoccum, AABB) and Z2921, expressed the red stems of Z2921. The flanking markers of RgM4G52 developed in this study could be useful for developing additional common wheat lines with red stems, laying the foundation for marker-assisted breeding and the fine mapping of RgM4G52.
RESUMO
Cleistogamy in barley is genetically determined by the presence of the recessive allele cly1, but the dominant allele at the linked locus Cly2 is epistatic over cly1. Although the molecular basis for cly1 action is well understood, that of Cly2 is not. Here we show that anther non-extrusion can occur not just when the lodicules fail to expand adequately (a trait which is fully determined by the allelic state at the cly1 locus), but by the premature timing of anthesis before the spike has emerged from the boot. The transcription of HvAP2 at cly1 is unaffected by the timing of anthesis. Where this occurs prematurely, by the time that the spike has emerged from the boot, the lodicules have already become shrunken and have lost the capacity to push the lemma and palea apart. Premature anthesis appears to be governed by a dominant gene, probably Cly2. Of the three phases of development of a non-cleistogamous barley floret (spike emergence from the boot, floret gaping induced by lodicule expansion and anther extrusion), genetic variation is available regarding at least the former two.
Assuntos
Flores/genética , Flores/fisiologia , Hordeum/genética , Hordeum/fisiologia , Alelos , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hordeum/anatomia & histologia , Endogamia , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNARESUMO
The majority of genes present in the hexaploid bread wheat genome are present as three homoeologs. Here, we describe the three homoeologous orthologs of the barley cleistogamy gene Cly1, a member of the AP2 gene family. As in barley, the wheat genes (designated TaAP2-A, -B and -D) map to the sub-telomeric region of the long arms of the group 2 chromosomes. The structure and pattern of transcription of the TaAP2 homoeologs were similar to those of Cly1. Transcript abundance was high in the florets, and particularly in the lodicule. The TaAP2 message was cleaved at its miR172 target sites. The set of homoeolog-specific PCR assays developed will be informative for identifying either naturally occurring or induced cleistogamous alleles at each of the three wheat homoeologs. By combining such alleles via conventional crossing, it should be possible to generate a cleistogamous form of bread wheat, which would be advantageous both with respect to improving the level of the crop's resistance against the causative pathogen of fusarium head blight, and for controlling pollen-mediated gene flow to and from genetically modified cultivars.