Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reproduction ; 163(2): 69-83, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34904570

RESUMO

Defects in spermatogenesis are an important cause of male infertility. Multiple aspects of spermatogenesis are controlled by chromatin remodellers, including regulating transcription. We previously described mutations in chromatin remodelling gene Cecr2 that resulted in the lethal neural tube defect exencephaly in most mutant mice and subfertility in mice that were non-penetrant for exencephaly. Here, we show that the severity of male subfertility is dependent on age. Cecr2GT/Del males contain two mutant alleles, one of which is hypomorphic and therefore produces a small amount of protein. These males sire the fewest pups just after sexual maturity (88% fewer than Cecr2+/+ at P42-60) but improve with age (49% fewer than Cecr2+/+ at P81-100), although never completely recovering to Cecr2+/+(wild type) levels. When young, they also have defects in testis histology, in vivo fertilization frequency, sperm number and motility, and testis weight that show similar improvement with age. Immunostaining of staged seminiferous tubules showed CECR2 in type A, intermediate and B spermatogonia, and less in preleptotene and leptotene spermatocytes. Histological defects were first apparent in Cecr2GT/Del testes at P24, and RNA-seq analysis revealed 387 differentially expressed genes. This included 66 genes on the X chromosome (almost double the number on any other chromosome), all more highly expressed in Cecr2GT/Del testes. This inappropriate expression of X chromosome genes could be caused by a failure of effective meiotic sex chromosome inactivation. We identify several abnormally expressed genes that may contribute to defects in spermatogenesis at P24. Our results support a role for Cecr2 in juvenile spermatogenesis.


Assuntos
Cromatina , Infertilidade Masculina , Espermatogênese , Fatores de Transcrição , Animais , Montagem e Desmontagem da Cromatina , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Espermatogênese/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismo
2.
Biochem Cell Biol ; 99(6): 759-765, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34197713

RESUMO

Chromatin remodeling complexes alter chromatin structure to control access to DNA and therefore control cellular processes such as transcription, DNA replication, and DNA repair. CECR2 is a chromatin remodeling factor that plays an important role in neural tube closure and reproduction. Loss-of-function mutations in Cecr2 result primarily in perinatal lethal neural tube defect exencephaly, with non-penetrant mice that survive to adulthood exhibiting subfertility. CECR2 forms a complex with ISWI proteins SMARCA5 and (or) SMARCA1; however, further information on the structure and function of the complex is not known. Therefore, we identified candidate components of the CECR2-containing remodeling factor (CERF) complex in embryonic stem (ES) cells using mass spectroscopy. Both SMARCA5 and SMARCA1 were confirmed to be present in the CERF complexes in ES cells and testes. However, the novel proteins CCAR2 and LUZP1 are CERF components in ES cells, but not in the testis. This tissue specificity in mice suggests that these complexes may also have functional differences. Furthermore, LUZP1, the loss of which is also associated with exencephaly, appears to play a role in stabilizing the CERF complex in ES cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Defeitos do Tubo Neural , Fatores de Transcrição/metabolismo , Animais , Cromatina , Reparo do DNA , Feminino , Masculino , Camundongos , Gravidez
3.
Biol Reprod ; 104(4): 835-849, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33354716

RESUMO

Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the peri-implantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.


Assuntos
Implantação do Embrião/genética , Perda do Embrião/genética , Infertilidade Feminina/genética , Fatores de Transcrição/genética , Animais , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Gravidez , Fatores de Transcrição/fisiologia
4.
Int J Neonatal Screen ; 9(3)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37606479

RESUMO

Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by biallelic pathogenic/likely pathogenic variants of the survival motor neuron 1 (SMN1) gene. Early diagnosis via newborn screening (NBS) and pre-symptomatic treatment are essential to optimize health outcomes for affected individuals. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay using dried blood spot (DBS) samples for the detection of homozygous absence of exon 7 of the SMN1 gene. Newborns who screened positive were seen urgently for clinical evaluation. Confirmatory testing by multiplex ligation-dependent probe amplification (MLPA) revealed SMN1 and SMN2 gene copy numbers. Six newborns had abnormal screen results among 47,005 newborns screened during the first year and five were subsequently confirmed to have SMA. Four of the infants received SMN1 gene replacement therapy under 30 days of age. One infant received an SMN2 splicing modulator due to high maternally transferred AAV9 neutralizing antibodies (NAb), followed by gene therapy at 3 months of age when the NAb returned negative in the infant. Early data show that all five infants made excellent developmental progress. Based on one year of data, the incidence of SMA in Alberta was estimated to be 1 per 9401 live births.

5.
Birth Defects Res A Clin Mol Teratol ; 88(8): 619-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20589882

RESUMO

BACKGROUND: Over 200 mouse genes are associated with neural tube defects (NTDs), including Cecr2, the bromodomain-containing subunit of the CERF chromatin remodeling complex. METHODS: Gene-trap mutation Cecr2(Gt45Bic) results in 74% exencephaly (equivalent of human anencephaly) on the BALB/c strain. Gene expression altered during cranial neural tube closure by the Cecr2 mutation was identified through microarray analysis of 11-14 somites stage Cecr2(Gt45Bic)embryos. RESULTS: Analysis of Affymetrix Mouse 430 2.0 chips detected 60 transcripts up-regulated and 54 transcripts down-regulated in the Cecr2(Gt45Bic) embryos (fold > 1.5, p < 0.05). The Cecr2 transcript was reduced only approximately 7- to 14-fold from normal levels, suggesting the Cecr2(Gt45Bic) is a hypomorphic mutation. We therefore generated a novel Cecr2 null allele (Cecr2 (tm1.1Hemc)). Resulting mutants displayed a stronger penetrance of exencephaly than Cecr2(Gt45Bic) in both BALB/c and FVB/N strains, in addition to midline facial clefts and forebrain encephalocele in the FVB/N strain. The Cecr2 transcript is reduced 260-fold in the Cecr2(tm1.1Hemc) line. Subsequent qRT-PCR using Cecr2 (tm1.1Hemc) mutant heads confirmed downregulation of transcription factors Alx1/Cart1, Dlx5, Eya1, and Six1. CONCLUSIONS: As both Alx1/Cart1 and Dlx5 mouse mutations result in exencephaly, we hypothesize that changes in expression of these mesenchymal/ectodermal transcription factors may contribute to NTDs associated with Cecr2.


Assuntos
Ectoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/metabolismo , Mutação , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fatores de Transcrição/genética , Animais , Regulação para Baixo/genética , Ectoderma/fisiopatologia , Encefalocele/metabolismo , Ossos Faciais/anormalidades , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Mesoderma/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Defeitos do Tubo Neural/fisiopatologia , Gravidez , Prosencéfalo/anormalidades , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima/genética
6.
Biol Res ; 42(4): 517-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20140307

RESUMO

Inhibition of the cell growth or induction of cell death is the most promising area in cancer therapy. The induction of apoptosis by dichloromethane extract of Prangos uloptera was evaluated on the McCoy cell line. This plant's roots, aerial parts and fruit have medicinal value. Cell growth inhibitory and cell cytotoxicity effects of the extract were assayed by MTT and Trypan-blue tests, respectively. Morphological changes and DNA fragmentation were also evaluated. The viability tests showed 0.49 and 0.3 mg/ml as 50% inhibition concentration and 50% cytotoxicity concentration after 24 hours of treatment, respectively. Fluorescent microscopy analysis revealed chromatin fragmentation and scanning electron microscopy showed cell shrinkage and cytoplasmic blebbing. These findings were confirmed by DNA fragmentation analysis. The results demonstrated efficient induction of apoptosis by the plant extract in moderate concentrations, but administration of higher concentrations showed that the primary manner of cell death was necrosis.


Assuntos
Apiaceae/química , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
8.
J Mol Biol ; 415(5): 793-806, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22154806

RESUMO

The regulation of nucleosome positioning and composition by ATP-dependent chromatin remodeling enzymes and their associated binding partners plays important biological roles in mammals. CECR2 is a binding partner to the ISWI (imitation switch) ATPase SNF2L/SMARCA1 and is involved in neural tube closure and inner ear development; however, its functions in adult tissues have not been examined. Here, we report that CECR2 contributes to spermatogenesis and forms a complex that includes the other ISWI ATPase SNF2H/SMARCA5 in the testis. Cecr2 mutant males non-penetrant for neural tube defects sired smaller litters than wild-type males. Strikingly, while we found that Cecr2 mutants have normal seminiferous epithelium morphology, sperm count, motility, and morphology, the mutant spermatozoa were compromised in their ability to fertilize oocytes. Investigation of CECR2/ISWI complexes in the testis showed that SNF2H interacted with CECR2, and this interaction was also observed in embryonic stem cells, suggesting that CECR2 may interact with SNF2H or SNF2L depending on the cell type. Finally, we found that Cecr2 mutants exhibit misregulation of the homeobox transcription factor Dlx5 in the testis, suggesting that CECR2 complexes may regulate gene expression during spermatogenesis. Taken together, our results demonstrate a novel role of CECR2-containing complexes in spermatogenesis and show that CECR2 interacts predominantly with SNF2H instead of SNF2L in the testis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espermatogênese , Testículo/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Epitélio Seminífero/citologia , Epitélio Seminífero/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides/citologia , Espermatozoides/metabolismo , Testículo/citologia , Fatores de Transcrição/metabolismo
9.
Biol. Res ; 42(4): 517-522, 2009. graf, ilus
Artigo em Inglês | LILACS | ID: lil-537111

RESUMO

Inhibition of the cell growth or induction of cell death is the most promising area in cancer therapy. The induction of apoptosis by dichloromethane extract of Prangos uloptera was evaluated on the McCoy cell line. This plant's roots, aerial parts and fruit have medicinal value. Cell growth inhibitory and cell cytotoxicity effects of the extract were assayed by MTT and Trypan-blue tests, respectively. Morphological changes and DNA fragmentation were also evaluated. The viability tests showed 0.49 and 0.3 mg/ml as 50 percent inhibition concentration and 50 percent cytotoxicity concentration after 24 hours of treatment, respectively. Fluorescent microscopy analysis revealed chromatin fragmentation and scanning electron microscopy showed cell shrinkage and cytoplasmic blebbing. These findings were confirmed by DNA fragmentation analysis. The results demonstrated efficient induction of apoptosis by the plant extract in moderate concentrations, but administration of higher concentrations showed that the primary manner of cell death was necrosis.


Assuntos
Humanos , Apiaceae/química , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA