Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biol Pharm Bull ; 47(2): 389-393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325827

RESUMO

It was recently reported that the dexmedetomidine concentration within the extracorporeal circuit decreases with co-administration of midazolam. In this study, we investigated whether displacement of dexmedetomidine by midazolam from the binding site of major plasma proteins, human serum albumin (HSA) and α1-acid glycoprotein (AAG), would increase levels of free dexmedetomidine that could be adsorbed to the circuit. Equilibrium dialysis experiments indicated that dexmedetomidine binds to a single site on both HSA and AAG with four times greater affinity than midazolam. Midazolam-mediated inhibition of the binding of dexmedetomidine to HSA and AAG was also examined. The binding of dexmedetomidine to these proteins decreased in the presence of midazolam. Competitive binding experiments suggested that the inhibition of binding by midazolam was due to competitive displacement at site II of HSA and due to non-competitive displacement at the site of AAG. Thus, our present data indicate that free dexmedetomidine displaced by midazolam from site II of HSA or from AAG is adsorbed onto extracorporeal circuits, resulting in a change in the dexmedetomidine concentration within the circuit.


Assuntos
Dexmedetomidina , Midazolam , Humanos , Ligação Proteica/fisiologia , Dexmedetomidina/farmacologia , Proteínas Sanguíneas/metabolismo , Orosomucoide/metabolismo , Albumina Sérica Humana/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 72(1): 21-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171901

RESUMO

Pirarubicin (THP) shows more rapid intracellular uptake, more effective antitumor activity, and less cardiac toxicity, compared to doxorubicin. However, THP is distributed to both tumor and normal tissues indiscriminately. This study aimed to develop a nanosuspension to deliver THP to tumor tissues more efficiently. Fatty-acid-modified THPs (FA-THPs; octanoic acid, dodecanoic acid, palmitic acid-THPs) were synthesized to increase the hydrophobicity of THP. Nanosuspensions of these FA-THPs were then prepared using an antisolvent precipitation technique. Among the FA-THPs, the most efficiently drug-loaded nanosuspension was obtained from palmitic acid-THP (pal-THP) using an aqueous antisolvent containing bovine serum albumin as a stabilizer. The pal-THP nanoparticles in the nanosuspension were confirmed to be of optimal size (100-125 nm) for delivery to tumor tissues using dynamic light scattering and transmission electron microscopy. The pal-THP nanosuspension showed cytotoxicity in colon 26 cells. The nanosuspension was shown to disintegrate in the presence of surfactants such as lecithin, liberating pal-THP, which was converted to free THP in acidic media. It is therefore proposed that pal-THP nanoparticles that reach tumor cells after intravenous administration would exert antitumor effect by liberating pal-THP (i.e., disintegration of nanoparticles by the interaction with cell membrane), followed by the release of free THP in the acidic milieu of tumor cells. These findings indicate that FA-THP nanosuspensions, particularly pal-THP nanosuspension, hold promise as a candidate for cancer treatment. However, further in vivo studies are necessary.


Assuntos
Ácidos Graxos , Nanopartículas , Ácido Palmítico , Doxorrubicina/farmacologia , Soroalbumina Bovina , Suspensões , Tamanho da Partícula , Solubilidade
3.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894771

RESUMO

4-phenylbutyrate (PB) and structurally related compounds hold promise for treating many diseases, including cancers. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their evaluation and clinical use. This study explores cyclodextrin (CD) complexation as a strategy to address these limitations. The structural chemistry of the CD complexes of these compounds was analyzed using phase solubility, nuclear magnetic resonance (NMR) spectroscopic techniques, and molecular modeling to inform the choice of CD for such application. The study revealed that PB and its shorter-chain derivative form 1:1 αCD complexes, while the longer-chain derivatives form 1:2 (guest:host) complexes. αCD includes the alkyl chain of the shorter-chain compounds, depositing the phenyl ring around its secondary rim, whereas two αCD molecules sandwich the phenyl ring in a secondary-to-secondary rim orientation for the longer-chain derivatives. ßCD includes each compound to form 1:1 complexes, with their alkyl chains bent to varying degrees within the CD cavity. γCD includes two molecules of each compound to form 2:1 complexes, with both parallel and antiparallel orientations plausible. The study found that αCD is more suitable for overcoming the pharmaceutical drawbacks of PB and its shorter-chain derivative, while ßCD is better for the longer-chain derivatives.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Química Farmacêutica/métodos , Fenilbutiratos , Preparações Farmacêuticas , Solubilidade
4.
Biol Pharm Bull ; 45(6): 803-805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35650107

RESUMO

Nateglinide (NAT) is used to treat diabetes, stimulating pancreatic islet ß-cells with residual insulin secretory capacity to increase insulin secretion. NAT has been reported to bind to human serum albumin (HSA), but the detail is still unclear. In the current study, we investigated the location and the affinity for the binding of NAT to HSA. Quantitative analysis data from the ultrafiltration experiment indicated that NAT binds strongly to a primary site on HSA with a high affinity. The presence of diazepam (DZP) or ibuprofen (IB), the specific site II ligands of HSA, decreased the binding constants of NAT respectively, without the significant changes in the number of binding sites. Whereas warfarin (WF), a site I specific ligand, did not affect the binding of NAT. Fluorescent replacement experiment showed that NAT replaced dansylsarcosine (DNSS), a site II probe of HSA, but not WF. An increasing level of myristate and uremic toxins, indoxyl sulphate (IS), indoxyl acetate (IA) and p-cresyl sulphate (PCS), during renal disease significantly increased the concentration of unbound NAT. These findings suggest that NAT specifically binds to site II of HSA and the binding capacity and pharmacokinetics of NAT change in renal diseases.


Assuntos
Secretagogos , Albumina Sérica Humana , Ácidos Graxos , Humanos , Insulina , Insulina Regular Humana , Ligantes , Nateglinida , Albumina Sérica/metabolismo , Toxinas Urêmicas , Varfarina
5.
Mol Pharm ; 18(3): 1061-1070, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33478218

RESUMO

Benzbromarone has been used for the treatment of gout for more than 30 years. Although it shows a high level of binding to plasma proteins (>99%), our knowledge of this binding is not sufficiently extensive to permit us to understand its pharmacokinetics and pharmacodynamics. To address this issue in more detail, we characterized the binding of benzbromarone to human serum albumin (HSA), the most abundant protein in plasma. Equilibrium dialysis and circular dichroism findings indicated that benzbromarone binds strongly to one primary as well as to multiple secondary sites on HSA and that the bromine atoms of benzbromarone play important roles in this high affinity binding. An X-ray crystallographic study revealed that benzbromarone molecules bind to hydrophobic pockets within subdomains IB, IIA, and IIIA. Inhibition experiments using site specific ligands (subdomain IB; fusidic acid, IIA; warfarin, IIIA; diazepam) indicated that the primary and secondary binding sites that benzbromarone binds to are within subdomains IIIA and IB/IIA, respectively. Lastly, a study of the effect of fatty acids on the benzbromarone-HSA interaction suggested that benzbromarone, when displaced from subdomain IIIA by sodium oleate, could transfer to subdomains IB or IIA. Thus, these data will permit more relevant assessments of the displacement interactions of benzbromarone especially in cases of co-administered drugs or endogenous compounds that also bind to subdomain IIIA. In addition, the findings presented herein will also be useful for designing drug combination therapy in which pharmacokinetic and pharmacodynamic performance need to be controlled.


Assuntos
Benzobromarona/metabolismo , Sítios de Ligação/fisiologia , Domínios Proteicos/fisiologia , Albumina Sérica Humana/metabolismo , Dicroísmo Circular/métodos , Cristalografia por Raios X/métodos , Ácidos Graxos/metabolismo , Humanos , Ligantes , Ligação Proteica/fisiologia
6.
Vet Res ; 52(1): 58, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863386

RESUMO

Mycoplasma bovis (M. bovis) is a significant worldwide pathogen of cattle. Neutrophils have an important role in the innate immune response during infection with M. bovis. However, even though neutrophils accumulate in M. bovis infection, the interaction of M. bovis and neutrophils has not been fully elucidated. We attempted to elucidate the innate immune response of neutrophils stimulated with M. bovis and evaluate the transcriptome and functional analysis of bovine neutrophils stimulated with M. bovis. Proinflammatory cytokines, such as inducible nitric oxide (iNOS), which was the most increased gene in transcriptome analysis, were increased in quantitative polymerase chain reaction analysis of bovine neutrophils stimulated with live or heat-killed M. bovis. Nitric oxide and intracellular reactive oxygen species production of neutrophils stimulated with M. bovis was significantly increased. Neutrophils stimulated with M. bovis showed an increased ratio of nonapoptotic cell death compared to unstimulated controls. We demonstrated that neutrophil extracellular traps (NETs) formation was not recognized in neutrophils stimulated with live M. bovis. However, heat-killed M. bovis induced NETs formation. We also showed the interaction with M. bovis and bovine neutrophils regarding proinflammatory cytokine gene expression and functional expression related to NETs formation. Live and killed M. bovis induced innate immune responses in neutrophils and had the potential to induce NETs formation, but live M. bovis escaped NETs.


Assuntos
Doenças dos Bovinos/imunologia , Armadilhas Extracelulares/metabolismo , Expressão Gênica/imunologia , Imunidade Inata , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/fisiologia , Neutrófilos/imunologia , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Armadilhas Extracelulares/microbiologia , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia
7.
Biol Pharm Bull ; 44(3): 437-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642552

RESUMO

We recently reported that aripiprazole (ARP), an antipsychotic drug, binds strongly to human serum albumin (HSA), the major drug binding protein in serum. It is known that uremic toxins that accumulate during renal disease affect the interaction between HSA and drug binding. In this study, the issue of how uremic toxins (indoxyl sulfate, indole acetic acid and p-cresyl sulfate) affect the binding of ARP to HSA was investigated. Equilibrium dialysis experiments revealed that all uremic toxins inhibited the binding of ARP to HSA although the inhibitory effects differed, depending on the specific uremic toxin. The potency of inhibition can be partially explained by the affinities of uremic toxins to HSA. Fluorescence displacement experiments suggested that ARP as well as all uremic toxins bind to site II of HSA. The inhibitory effects of the toxins on the binding of ARP for the drugs binding to the diazepam subsite are significantly larger, comparing with those for binding to arylpropionic acids subsite. Interestingly, induced circular dichroism (CD) spectra indicated that the spatial orientation of p-cresyl sulfate in the binding pocket is different from that for indoxyl sulfate and indole acetic acid. The limited findings obtained herein are important data in considering the effects of uremic toxins on the pharmacokinetics of ARP and the drugs that bind to site II on HSA, particularly drugs binding to diazepam binding site in site II.


Assuntos
Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Cresóis/farmacologia , Indicã/farmacologia , Ácidos Indolacéticos/farmacologia , Albumina Sérica Humana/metabolismo , Ésteres do Ácido Sulfúrico/farmacologia , Sítios de Ligação , Humanos , Ácido Oleico/farmacologia , Ligação Proteica , Uremia
8.
Biol Pharm Bull ; 44(2): 259-265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518678

RESUMO

Nafamostat mesilate (NFM) is used as an anticoagulant during hemodialysis in patients who have had complications due to hemorrhages. The formation of precipitates, which could lead to the interruption of hemodialysis has been reported when NFM is infused into blood during hemodialysis. We report herein on an examination of possible factors that could cause this. The effects of electrolytes such as phosphates, citrates or succinates on the formation of precipitates were examined by mixing NFM with aqueous solutions or plasma that contained these electrolytes. The formation of precipitates was observed in all electrolyte solutions when higher concentrations of NFM were mixed at around physiological pH. In the case of plasma, precipitates were observed when solutions containing higher concentrations of NFM were mixed with plasma that contained phosphate and citrate. In addition, the formation of precipitates under dynamic conditions where NFM was infused into flowing electrolyte solutions was also evaluated. The data suggested that such precipitates might be formed and disrupt the blood flow and/or an NFM infusion when NFM is infused into blood flowing in the hemodialysis circuit. The findings presented herein suggest the serum levels of anionic electrolytes (e.g., phosphate), the type of excipients present in pharmaceutical products (e.g., succinic acid or citric acid), the concentration of NFM used for the infusion or the rates of NFM infusion and blood flow are all factors that could affect precipitate formation during NFM infusions for hemodialysis.


Assuntos
Anticoagulantes/administração & dosagem , Benzamidinas/administração & dosagem , Soluções para Diálise/química , Guanidinas/administração & dosagem , Diálise Renal/efeitos adversos , Ânions/sangue , Ânions/química , Anticoagulantes/química , Benzamidinas/química , Eletrólitos/sangue , Eletrólitos/química , Guanidinas/química , Hemorragia/tratamento farmacológico , Hemorragia/etiologia , Humanos , Plasma/química , Solubilidade
9.
Subcell Biochem ; 94: 383-397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189308

RESUMO

Albumin is widely conserved from vertebrates to invertebrates, and nature of mammalian albumins permit them to bind various endogenous ligands and drugs in the blood. It is known that at least two major ligand binding sites are present on the albumin molecule, which are referred to as Site I and Site II. These binding sites are thought to be almost completely conserved among mammals, even though the degree of binding to these sites are different depending on the physical and chemical properties of drugs and differences in the microenvironment in the binding pockets. In addition, the binding sites for medium and long-chain fatty acids are also well conserved among mammals, and it is considered that there are at least seven binding sites, including Site I and Site II. These bindings properties of albumin in the blood are also widely known to be important for transporting drugs and fatty acids to various tissues. It can therefore be concluded that albumin is one of the most important serum proteins for various ligands, and information on human albumin can be very useful in predicting the ligand binding properties of the albumin of other vertebrates.


Assuntos
Ácidos Graxos/metabolismo , Preparações Farmacêuticas/metabolismo , Albumina Sérica/metabolismo , Animais , Sítios de Ligação , Ácidos Graxos/química , Humanos , Preparações Farmacêuticas/química , Ligação Proteica , Albumina Sérica/química
10.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843962

RESUMO

Mycoplasma bovis is a destructive pathogen that causes large economic losses in rearing cattle for beef and dairy worldwide. M. bovis causes suppression of and evades the host immune response; however, the mechanisms of host immune function involved in M. bovis mastitis have not been elucidated. The purpose of this study was to elucidate the characteristics of the bovine immune response to mycoplasmal mastitis. We evaluated the responsiveness of the bovine mammary gland following infusion of M. bovis Somatic cell counts and bacterial counts in milk from the infected quarter were increased. However, the proliferation of peripheral blood mononuclear cells (blood MNCs) and mononuclear cells isolated from M. bovis-stimulated mammary lymph nodes (lymph node MNCs) did not differ from that in the unstimulated cells. Transcriptome analysis revealed that the mRNA levels of innate immune system-related genes in blood MNCs, complement factor D (CFD), ficolin 1 (FCN1), and tumor necrosis factor superfamily member 13 (TNFSF13) decreased following intramammary infusion of M. bovis The mRNA levels of immune exhaustion-related genes, programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), lymphocyte activation gene 3 (LAG3), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) of milk mononuclear cells (milk MNCs) in the infected quarter were increased compared with those before infusion. Increase in immune exhaustion-related gene expression and decrease in innate immune response-related genes of MNCs in quarters from cows were newly characterized by M. bovis-induced mastitis. These results suggested that M. bovis-induced mastitis affected the immune function of bovine MNCs, which is associated with prolonged duration of infection with M. bovis.


Assuntos
Imunidade Inata/imunologia , Glândulas Mamárias Animais/imunologia , Mastite Bovina/imunologia , Mycoplasma bovis , Animais , Bovinos , Feminino , Tolerância Imunológica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
11.
Biol Pharm Bull ; 43(6): 1023-1026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475912

RESUMO

Aripiprazole (ARP) is one of antipsychotics and binds to human serum albumin (HSA) with a high affinity. In this study, we investigated the binding characteristics of ARP to oxidized HSA as observed in chronic disease conditions. Oxidized HSAs were prepared using chloramine-T (CT-HSA) or metal-catalyzed oxidation system (MCO-HSA) in vitro, respectively. An increase in the carbonyl content was confirmed in oxidized HSAs. From the results of circular dichroism (CD) and tryptophan fluorescence spectra, no significant structural change of oxidized HSAs was observed. These results indicate that prepared HSAs are mildly oxidized and well reflects the status of HSA during chronic diseases. However, oxidized HSAs were observed to have a significant decrease in binding to ARP. The results of the induced CD spectrum suggested that ARP bound to oxidized HSAs with a similar orientation. These results suggest that oxidation of HSA during chronic disease state significantly affected the microenvironment of the binding site for ARP and binding capacity of HSA to ARP.


Assuntos
Antipsicóticos/química , Aripiprazol/química , Albumina Sérica Humana/química , Cloraminas/química , Dicroísmo Circular , Oxirredução , Carbonilação Proteica , Espectrometria de Fluorescência , Compostos de Tosil/química , Triptofano
12.
Chem Pharm Bull (Tokyo) ; 68(8): 766-772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741918

RESUMO

Lactoferrin (Lf) nanoparticles have been developed as a carrier of drugs and gene. Two main methods, desolvation technique and emulsification method, for preparation of protein nanoparticles have been reported so far, but most of the previous reports of Lf nanoparticles preparation are limited to emulsification method. In this study, we investigated the optimal conditions by desolvation technique for the preparation of glutaraldehyde-crosslinked bovine Lf (bLf) nanoparticles within the size range of 100-200 nm, and evaluated their properties as a carrier for oral and intravenous drug delivery. The experimental results of dynamic light scattering and Transmission Electron Microscope suggested that glutaraldehyde-crosslinked bLf nanoparticles with 150 nm in size could be produced by addition of 2-propanol as the desolvating solvent into the bLf solution adjusted to pH 6, followed by crosslinking with glutaraldehyde. These cross-linked bLf nanoparticles were found to be compatible to blood components and resistant against rapid degradation by pepsin. Thus, cross-linked bLf nanoparticles prepared by desolvation technique can be applied as a drug carrier for intravenous administration and oral delivery.


Assuntos
Lactoferrina/química , Nanopartículas/química , 2-Propanol/química , Administração Oral , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Bovinos , Portadores de Fármacos/química , Glutaral/química , Hemólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Lactoferrina/sangue , Nanopartículas/toxicidade , Tamanho da Partícula , Ratos
13.
Biol Pharm Bull ; 40(10): 1813-1817, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966257

RESUMO

Human serum albumin (HSA), the most abundant protein in serum, functions as carrier of drugs and contributes to maintaining serum colloid osmotic pressure. We report herein on the preparation of a genetic recombinant HSA, in which domains II and III were changed to domain I (triple domain I; TDI). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that the purity of the TDI was equivalent to that of the wild type (WT). Both far- and near-UV circular dichroism (CD) spectra of the TDI showed that its structural characteristics were similar to the WT. Ligand binding capacity was examined by an ultrafiltration method using 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) and ketoprofen as markers for site I and site II, respectively. The binding capacity of TDI for both ligands was lower than that for the wild type. TDI significantly suppressed the oxidation of dihydrorhodamine 123 (DRD) by H2O2 compared to the WT. Our current results suggest that TDI has great potential for further development as HSA a product having antioxidative functions.


Assuntos
Antioxidantes/química , Albumina Sérica Humana/química , Furanos/química , Peróxido de Hidrogênio/química , Cetoprofeno/química , Ligantes , Oxirredução , Propionatos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Rodaminas/química , Albumina Sérica Humana/genética
14.
Langmuir ; 30(13): 3749-53, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24628046

RESUMO

The process of CO2 adsorption on silicalite-1 zeolite (MFI-type) is revealed using a single-crystal X-ray method. The structure of CO2-silicalite-1 with a small amount of CO2 in the pore is determined, wherein most of CO2 molecules are located in the straight channel. It indicates the straight channel is the most stable sorption site based on the van der Waals interactions between the CO2 and the framework, and the CO2 molecules initially adsorb in the straight channel in the adsorption process. This is the first report to describe the structure of MFI-type zeolites with the adsorbate molecules occupying only the straight channel.

15.
Phys Chem Chem Phys ; 16(30): 15839-45, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24954128

RESUMO

The actual adsorption structures of non-aromatic hydrocarbons on the MFI-type zeolites have not yet been determined. This is due to the presence of twinning, which makes crystallographic analysis difficult. We recently overcame this problem, and now report the various adsorption structures of n-butane, n-pentane, n-hexane, 1-butene, cis and trans-2-butene, 2-butyne and isopentane on silicalite-1 (MFI-type zeolite) as determined via single-crystal X-ray diffraction. The structures were elucidated for both low and high loadings of each guest molecule in order to clarify the adsorption process. The low-loaded structures provide valuable insight into guest-framework interactions and initial adsorption behavior. The n-alkanes are initially adsorbed in the sinusoidal channel, while 2-butyne is adsorbed in the straight channel. In the case of the normal hydrocarbons, the molecular configuration (bent or linear) of the compound determines which channel is the preferred adsorption site. Bent molecules prefer the sinusoidal channel and linear molecules prefer the straight channel. In contrast, isopentane is initially adsorbed at the intersection, since the channels are too narrow to maintain the preferred distance between the framework and the bulky isopentane molecule. In the high-loaded structures, the guest molecules occupy additional sites, such that the normal hydrocarbons are located in both channels and isopentane is found at the intersection and the sinusoidal channel.

16.
Pharmaceutics ; 16(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258093

RESUMO

Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based orally disintegrating tablet (ODT) formulation for PB as an alternative to existing formulations. This is based on previous reports of the PB taste-masking potential of CDs and the suitability of ODTs for improving compliance in pediatric and dysphagic populations. In preliminary studies, the interactions of PB with α and ßCD in the solid state were characterized using X-ray diffraction, scanning electron microscopy, dissolution, and accelerated stability studies. Based on these studies, lyophilized PB-CD solid systems were formulated into ODTs after wet granulation. Evaluation of the ODTs showed that they had adequate physical characteristics, including hardness and friability and good storage stability. Notably, the developed αCD-based ODT for PB had a disintegration time of 28 s and achieved a slightly acidic and agreeable pH (≈5.5) in solution, which is suitable for effective PB-CD complexation and taste masking. The developed formulation could be helpful as an alternative to existing PB formulations, especially for pediatric and dysphagic UCD patients.

17.
J Vet Med Sci ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710622

RESUMO

Mycoplasma bovis mastitisis highly contagious and disrupts lactation, posing a significant threat to the dairy industry. While the mammary gland's defence mechanism involves epithelial cells and mononuclear cells (MNC), their interaction with M. bovis remains incompletely understood. In this study, we assessed the immunological reactivity of bovine mammary epithelial cells (bMEC) to M. bovis through co-culture with MNC. Upon co-culture with MNC, the mRNA expression levels of interleukin (IL)-1ß,IL-6, IL-8 and tumor necrosis factor (TNF)-α in bMEC stimulated by M. bovis showed a significant increase compared to monoculture. Additionally, when stimulated with M. bovis, the culture supernatant exhibited significantly higher concentrations of IL-6 and interferon (IFN)-γ, while IL-1ß concentration tended to be higher in co-culture with MNC than in monoculture. Furthermore, the mRNA expression levels of toll-like receptor (TLR) 2 in bMEC stimulated with M. bovis tended to increase, and TLR4 significantly increased when co-cultured with MNC compared to monocultures. However, the surface expression levels in bMEC did not exhibit significant changes between co-culture and monoculture. Overall, our research indicates that the inflammatory response of bMEC is increased during co-culture with MNC, suggesting that the interaction between bMEC and MNC in the mammary gland amplifies the immune response to M. bovis in cows affected by M. bovis mastitis.

18.
Yakugaku Zasshi ; 143(3): 205-210, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-36858548

RESUMO

Human serum albumin (HSA) and α1-acid glycoprotein (AGP) are the major drug-binding proteins in the blood and regulate the tissue transfer of bound drugs. We succeeded in clarifying the three-dimensional structure of AGP for the first time in the world from X-ray crystal structure analysis. Using a site-directed mutagenesis method by constructing yeast expression systems as well as the three-dimensional structure, we elucidated the properties of drug binding sites of AGP. We also found that structural change due to the interaction between AGP and cell membranes causes the release of bound drugs and reported an "AGP-mediated drug transport process." Pancreatic cancer has an extremely low response rate to anticancer drugs compared to other cancers and is resistant to starvation of nutrients including fatty acids. We clarified that glutamine metabolism is involved in this tolerance. Furthermore, aiming at efficient drug delivery and effective treatment for pancreatic cancer, we focused on nitric oxide (NO) which increases pancreatic blood flow and has a cell-killing effect on tumors and surrounding stromal tissues. We successfully synthesized nitrated phenylbutyrate (NPB), which binds to HSA and has an antitumor effect in vitro and vivo. The binding of NPB to HSA is considered to be useful for delivery to tumors through the enhanced permeability and retention (EPR) effect and HSA receptors.


Assuntos
Neoplasias Pancreáticas , Humanos , Proteínas Sanguíneas , Transporte Biológico , Neoplasias Pancreáticas
19.
Vet Immunol Immunopathol ; 260: 110608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37182306

RESUMO

Mycoplasma arthritis in calves caused by M. bovis exhibits joint swelling, lameness, and immobility. In contrast to M. bovis, M. arginini, and M. californicum which were similarly isolated from the affected joints, only induced mild inflammation. The changes in pathogenesis that depended on species, however, remained unknown. This investigation aims to examine the characteristics of immune responses to M. bovis, M. arginini, and M. californicum in synovial cells. Intracellular M. bovis was detected by gentamicin assay, but M. arginini and M. californicum were not detected. M. bovis-infected synovial cells were encouraged to proliferate and had their apoptosis suppressed. We suggest that M. bovis invaded and inhibited apoptosis of synovial to evade host immunity, which led to long term survival in joints. M. bovis infection significantly increased IL-6 mRNA expression compared to control, although M. arginini and M. californicum infection were comparable to control. We suggest that M. arginini and M. californicum have low abilities to induce inflammation in joints and therefore do not cause severe pathology. Our findings are the first to show the variations in synovial cell immune responses to M. bovis, M. arginini, and M. californicum, which are thought to be related to the pathogenicity of arthritis.


Assuntos
Artrite Infecciosa , Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Bovinos , Animais , Infecções por Mycoplasma/veterinária , Artrite Infecciosa/veterinária , Inflamação/veterinária
20.
J Med Chem ; 66(1): 951-961, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36538495

RESUMO

Mycophenolic acid (MP) is an active metabolite of mycophenolate mofetil, a widely used immunosuppressive drug. MP normally exhibits high plasma protein binding (97-99%), but its binding rate is decreased in patients with renal insufficiency. This decreased protein binding is thought to be associated with leukopenia, a side effect of MP. In this study, we characterized the change in protein binding of MP in renal failure patients. Our findings indicate that MP binds strongly to subdomain IIA of human serum albumin. X-ray crystallographic data indicated that the isobenzofuran group of MP forms a stacking interaction with Trp214, and the carboxyl group of MP is located at a position that allows the formation of hydrogen bonds with Tyr150, His242, or Arg257. Due to the specific binding of MP to subdomain IIA, MP is thought to be displaced by uremic toxin (3-carboxy-4-methyl-5-propyl-2-furan-propionic acid) and fatty acids (oleate or myristate) that can bind to subdomain IIA, resulting in the decreased plasma protein binding of MP in renal failure.


Assuntos
Ácido Micofenólico , Insuficiência Renal , Humanos , Sítios de Ligação , Ligação Proteica , Albumina Sérica/química , Albumina Sérica Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA