Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Genome Res ; 33(9): 1527-1540, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591668

RESUMO

Genomic studies of vertebrate chromosome evolution have long been hindered by the scarcity of chromosome-scale DNA sequences of some key taxa. One of those limiting taxa has been the elasmobranchs (sharks and rays), which harbor species often with numerous chromosomes and enlarged genomes. Here, we report the chromosome-scale genome assembly for the zebra shark Stegostoma tigrinum, an endangered species that has a relatively small genome among sharks (3.71 Gb), as well as for the whale shark Rhincodon typus Our analysis using a male-female comparison identified an X Chromosome, the first genomically characterized shark sex chromosome. The X Chromosome harbors the Hox C cluster whose intact linkage has not been shown for an elasmobranch fish. The sequenced shark genomes show a gradualism of chromosome length with remarkable length-dependent characteristics-shorter chromosomes tend to have higher GC content, gene density, synonymous substitution rate, and simple tandem repeat content as well as smaller gene length and lower interspersed repeat content. We challenge the traditional binary classification of karyotypes as with and without so-called microchromosomes. Even without microchromosomes, the length-dependent characteristics persist widely in nonmammalian vertebrates. Our investigation of elasmobranch karyotypes underpins their unique characteristics and provides clues for understanding how vertebrate karyotypes accommodate intragenomic heterogeneity to realize a complex readout. It also paves the way to dissecting more genomes with variable sizes to be sequenced at high quality.


Assuntos
Tubarões , Vertebrados , Feminino , Masculino , Animais , Sequência de Bases , Mapeamento Cromossômico , Vertebrados/genética , Tubarões/genética , Cariótipo
2.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658077

RESUMO

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Assuntos
Processos de Determinação Sexual , Takifugu , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Takifugu/genética , Translocação Genética
3.
J Neurosci ; 43(22): 3989-4004, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37117011

RESUMO

The presentation of nicotinic acetylcholine receptors (nAChRs) on synaptic membranes is crucial for generating cholinergic circuits, some of which are associated with memory function and neurodegenerative disorders. Although the physiology and structure of nAChR, a cation channel comprising five subunits, have been extensively studied, little is known about how the receptor levels in interneuronal synapses are determined and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices and intracellular proteins. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts in the brain. Only the loss of function of Dα5 among the 10 nAChR subunits suppressed hig mutant phenotypes in both male and female flies. Dα5 behaved as a lethal factor when Hig was defective; loss of Dα5 in hig mutants rescued lethality, upregulating Dα6 synaptic levels. By contrast, levels of Dα5, Dα6, and Dα7 subunits were all reduced in hig mutants. These three subunits have distinct properties for interaction with Hig or trafficking, as confirmed by chimeric subunit experiments. Notably, the chimeric Dα5 protein, which has the extracellular sequences that display no positive interaction with Hig, exhibited abnormal distribution and lethality even in the presence of Hig. We propose that the sequestering subunit Dα5 functions by reducing synaptic levels of nAChR through internalization, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.SIGNIFICANCE STATEMENT Because the cholinergic synapse is one of the major synapses that generate various brain functions, numerous studies have sought to reveal the physiology and structure of the nicotinic acetylcholine receptor (nAChR). However, little is known about how synaptic levels of nAChR are controlled and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts. Our data indicate that Dα5 functions in reducing synaptic levels of nAChR, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.


Assuntos
Proteínas de Drosophila , Receptores Nicotínicos , Animais , Feminino , Masculino , Colinérgicos , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica
4.
Dev Biol ; 498: 97-105, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019373

RESUMO

Gse1 is a component of the CoREST complex that acts as an H3K4 and H3K9 demethylase and regulates gene expression. Here, we examined the expression and role of Gse1 in mouse development. Gse1 is expressed in male and female germ cells and plays both maternal and zygotic roles. Thus, maternal deletion of Gse1 results in a high incidence of prenatal death, and zygotic deletion leads to embryonic lethality from embryonic day 12.5 (E12.5) and perinatal death. Gse1 is expressed in the junctional zone and the labyrinth of the developing placenta. Gse1 mutant (Gse1Δex3/Δex3) placenta begins to exhibit histological defects from E14.5, being deficient in MCT4+ syncytiotrophoblast II. The number of various cell types was largely maintained in the mutant placenta at E10.5, but several genes were upregulated in giant trophoblasts at E10.5. Placenta-specific deletion of Gse1 with Tat-Cre suggested that defects in Gse1Δex3/Δex3 embryos are due to placental function deficiency. These results suggest that Gse1 is required for placental development in mice, and in turn, is essential for embryonic development.


Assuntos
Placenta , Placentação , Camundongos , Gravidez , Feminino , Animais , Masculino , Desenvolvimento Embrionário/genética , Trofoblastos
5.
J Exp Zool B Mol Dev Evol ; 338(1-2): 129-136, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689235

RESUMO

The notochord functions primarily as a supporting tissue to maintain the anteroposterior axis of primitive chordates, a function that is replaced entirely by the vertebral column in many vertebrates. The notochord still appears during vertebrate embryogenesis and plays a crucial role in the developmental pattern formation of surrounding structures, such as the somites and neural tube, providing the basis for the vertebrate body plan. The indispensable role of the notochord has often been referred to as the developmental burden and used to explain the evolutionary conservation of notochord; however, the existence of this burden has not been successfully exemplified so far. Since the adaptive value of target tissues appears to result in the evolutionary conservation of upstream structures through the developmental burden, we performed comparative gene expression profiling of the notochord, somites, and neural tube during the mid-embryonic stages in turtles and chicken to measure their evolutionary conservation. When compared with the somites and neural tube, overall gene expression profiles in the notochord showed significantly lower or merely comparable levels of conservation. However, genes involved in inductive signalings, such as the sonic hedgehog (Shh) cascade and the formation of functional primary cilia, showed relatively higher levels of conservation in all the three structures analyzed. Collectively, these results suggest that shh signals are critical as the inductive source and receiving structures, possibly constituting the inter-dependencies of developmental burden.


Assuntos
Proteínas Hedgehog , Notocorda , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Notocorda/metabolismo , Transdução de Sinais , Somitos/metabolismo , Vertebrados/genética
6.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132235

RESUMO

RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences.IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated.


Assuntos
Variação Genética , Rotavirus/crescimento & desenvolvimento , Rotavirus/genética , Linhagem Celular , Evolução Molecular , Deriva Genética , Genética Populacional , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fenótipo , Quase-Espécies , Vírus de RNA/genética , RNA Viral/genética , Inoculações Seriadas
7.
Mol Ecol ; 30(23): 5923-5934, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34432923

RESUMO

The recent development of ecological studies has been fueled by the introduction of massive information based on chromosome-scale genome sequences, even for species for which genetic linkage is not accessible. This was enabled mainly by the application of Hi-C, a method for genome-wide chromosome conformation capture that was originally developed for investigating the long-range interaction of chromatins. Performing genomic scaffolding using Hi-C data is highly resource-demanding and employs elaborate laboratory steps for sample preparation. It starts with building a primary genome sequence assembly as an input, which is followed by computation for genome scaffolding using Hi-C data, requiring careful validation. This article presents technical considerations for obtaining optimal Hi-C scaffolding results and provides a test case of its application to a reptile species, the Madagascar ground gecko (Paroedura picta). Among the metrics that are frequently used for evaluating scaffolding results, we investigate the validity of the completeness assessment of chromosome-scale genome assemblies using single-copy reference orthologues.


Assuntos
Cromossomos , Genoma , Animais , Cromatina , Cromossomos/genética , Genoma/genética , Genômica , Madagáscar
8.
Mar Drugs ; 19(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202307

RESUMO

Bivalves serve as an important aquaculture product, as they are the source of essential fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in our diet. However, their cultivation in the wild can be affected by fouling organisms that, in turn, affect their EPA and DHA content. The effects of fouling organisms on the EPA and DHA contents of cultivated bivalves have not been well documented. We examined the effects of fouling organisms on the EPA and DHA contents and condition index of cultured oysters, Crassostrea gigas, in an aquaculture system. We sampled two-year-old oysters from five sites in Shizugawa Bay, Japan, in August 2014. Most of the fouling organisms were sponges, macroalgae, and Mytilus galloprovincialis. A significant negative relationship existed between the DHA content in C. gigas and the presence of sponges and macroalgae. A lower C. gigas EPA content corresponded to a higher M. galloprovincialis fouling mass and a lower C. gigas condition index. This can be explained by dietary competition between C. gigas and M. galloprovincialis for diatoms, which were the main producer of EPA in our study sites. Our findings indicate that fouling organisms likely reduce the EPA and DHA content in cultivated oysters. Therefore, our results suggest that the current efforts to remove fouling organisms from oyster clusters is an effective strategy to enhance the content of EPA and DHA in oysters.


Assuntos
Organismos Aquáticos , Crassostrea , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Animais , Aquicultura , Japão
9.
BMC Biol ; 18(1): 120, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907560

RESUMO

BACKGROUND: Vertebrates are characterized by possession of hypobranchial muscles (HBMs). Cyclostomes, or modern jawless vertebrates, possess a rudimentary and superficial HBM lateral to the pharynx, whereas the HBM in jawed vertebrates is internalized and anteroposteriorly specified. Precursor cells of the HBM, marked by expression of Lbx1, originate from somites and undergo extensive migration before becoming innervated by the hypoglossal nerve. How the complex form of HBM arose in evolution is relevant to the establishment of the vertebrate body plan, but despite having long been assumed to be similar to that of limb muscles, modification of developmental mechanisms of HBM remains enigmatic. RESULTS: Here we characterize the expression of Lbx genes in lamprey and hagfish (cyclostomes) and catshark (gnathostome; jawed vertebrates). We show that the expression patterns of the single cyclostome Lbx homologue, Lbx-A, do not resemble the somitic expression of mammalian Lbx1. Disruption of Lbx-A revealed that LjLbx-A is required for the formation of both HBM and body wall muscles, likely due to the insufficient extension of precursor cells rather than to hindered muscle differentiation. Both homologues of Lbx in the catshark were expressed in the somitic muscle primordia, unlike in amniotes. During catshark embryogenesis, Lbx2 is expressed in the caudal HBM as well as in the abdominal rectus muscle, similar to lamprey Lbx-A, whereas Lbx1 marks the rostral HBM and pectoral fin muscle. CONCLUSIONS: We conclude that the vertebrate HBM primarily emerged as a specialized somatic muscle to cover the pharynx, and the anterior internalized HBM of the gnathostomes is likely a novelty added rostral to the cyclostome-like HBM, for which duplication and functionalization of Lbx genes would have been a prerequisite.


Assuntos
Evolução Biológica , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Feiticeiras (Peixe)/crescimento & desenvolvimento , Lampreias/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Tubarões/crescimento & desenvolvimento , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Feiticeiras (Peixe)/genética , Lampreias/genética , Tubarões/genética
10.
J Environ Manage ; 290: 112621, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901830

RESUMO

Nitrous oxide (N2O), a strong greenhouse and ozone depleting gas, is known to be generated in the river environment. However, the impact of sewage treated water on the production mechanism has not been clarified. In this study, N2O production in the upper reach of a river was evaluated by field survey and activity test. The results demonstrated that the N2O production activity of the river pebbles increased with the inflow of the sewage treated water, which was supported by field survey results, such as the dissolved N2O concentrations and water quality. The emission factors of N2O were determined to be 0.02-0.05% in nitrification and 0.01-0.025% in denitrification. Our study shows that combining a field survey and an activity test improves the reliability of the results and leads to the appropriate quantitative evaluation. From a perspective of controlling the N2O emissions from the sewage treatment plant, N2O generation inside the plant is critical. However, appropriate nitrogen removal in the treatment plant is connected to the reduction of N2O generation in the river environment.


Assuntos
Desnitrificação , Esgotos , Reatores Biológicos , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Reprodutibilidade dos Testes , Água
11.
J Environ Manage ; 284: 112088, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582482

RESUMO

The pathogen concentration in human excreta needs to be managed appropriately, but a predictive approach has yet to be implemented due to a lack of kinetics models for pathogen inactivation that are available under varied environmental conditions. Our goals were to develop inactivation kinetics models of microorganisms applicable under varied environmental conditions of excreta matrices and to identify the appropriate indicators that can be monitored during disinfection processes. We conducted a systematic review targeting previous studies that presented time-course decay of a microorganism and environmental conditions of matrices. Defined as a function of measurable factors including treatment time, pH, temperature, ammonia concentration and moisture content, the kinetic model parameters were statistically estimated using hierarchical Bayesian modeling. The inactivation kinetics models were constructed for Escherichia coli, Salmonella, Enterococcus, Ascaris eggs, bacteriophage MS2, enterobacteria phage phiX174 and adenovirus. The inactivation rates of a microorganism were predicted using the established model. Ascaris eggs were identified as the most tolerant microorganisms, followed by bacteriophage MS2 and Enterococcus. Ammonia concentration, temperature and moisture content were the critical factors for the Ascaris inactivation. Our model predictions coincided with the current WHO guidelines. The developed inactivation kinetics models enable us to predict microbial concentration in excreta matrices under varied environmental conditions, which is essential for microbiological risk management in emerging resource recovery practices from human excreta.


Assuntos
Microbiologia Ambiental , Levivirus , Amônia , Teorema de Bayes , Humanos , Temperatura
12.
Environ Monit Assess ; 193(2): 93, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507415

RESUMO

Accurate estimation and control of greenhouse gas emissions have been recognized as imperative in recent years. Therefore, frequent investigations under uniform environmental conditions are required to better understand this concept. Thus, six sampling sites with characteristic concentrations of nitrogen and other water quality parameters were selected to investigate the behavior of water quality parameters throughout the year and to statistically examine the correlations among the parameters. Dissolved nitrous oxide (D-N2O) showed the highest positive correlation coefficient with NO2-N among nitrogen species. The results of the principal component analysis suggested that river water quality could be broadly classified based on photosynthesis and contamination from treated wastewater. Photosynthesis caused an increase in pH, with concomitant decrease in D-N2O concentration. Using the results of multiple regression analysis, D-N2O was accurately estimated based on nitrogen concentration, pH, and concentration of organic matter in various situations. The results of a detailed survey suggested that D-N2O was produced in the river from nitrogen sources released from the wastewater treatment plant. The main roles of the wastewater treatment plant for D-N2O behavior in the river were the supply of the nitrogen source that was the precursor of D-N2O, the supply of the nutrients that induced the photosynthesis, and the direct supply of D-N2O at a low water temperature. The models based on multiple regression analysis could efficiently predict the D-N2O concentration produced in rivers at sites downstream of the wastewater treatment plant, except for the direct supply of D-N2O as an effluent at low water temperature.


Assuntos
Óxido Nitroso , Águas Residuárias , Monitoramento Ambiental , Nitrogênio/análise , Óxido Nitroso/análise , Rios , Águas Residuárias/análise
13.
Dev Growth Differ ; 62(9): 527-539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33080046

RESUMO

Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Filogenia , Planárias/genética
14.
Ecotoxicol Environ Saf ; 203: 110966, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678755

RESUMO

We studied the effect of the chemical interaction of nutrients and the ethylenediamine tetraacetic acid (EDTA) on metals toxicity. Growth inhibition tests of Pseudokirchneriella subcapitata by nutrient metals copper (Cu) and zinc (Zn), and the non-nutrient metal lead (Pb), were performed. The high-enriched Bold's Basal medium (BBm) and two low-enriched standard media, recommended by the Organization for Economic Cooperation and Development (OECDm) and Environmental Protection Agency-algal assay procedure medium (AAPm), were used in this study. The metals toxicity was affected by the interaction of nutrients and EDTA. Cu+2 was more toxic in the OECDm (EC50 20.3 µg/L), while Pb+2 (EC50 23.1 µg/L) and Zn+2 (EC50 99.4 µg/L) in the AAPm. Non-toxic effect of these metals was observed in BBm, but the exclusion of EDTA shifted it into a toxic medium. Finally, we found that the toxicity of the studied nutrient metals is mainly influenced by EDTA, which reduced the concentration of ionized metals, while the toxicity of the non-nutrient metal is affected by EDTA and phosphates.


Assuntos
Monitoramento Biológico/métodos , Quelantes/farmacologia , Ácido Edético/farmacologia , Metais Pesados/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Bioensaio , Cobre/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Chumbo/toxicidade , Microalgas/crescimento & desenvolvimento , Modelos Teóricos , Zinco/toxicidade
15.
J Environ Manage ; 268: 110672, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32383646

RESUMO

Urine concentration (condensation) leads to the inactivation of pathogens in urine owing to a hyperosmotic environment. This study proposed an inactivation kinetic model of Escherichia coli (E. coli), a surrogate of human bacterial pathogens, in concentrated synthetic urine. The model parameters were obtained under an assumption that the inactivation rate of E. coli followed a binomial distribution, which made it possible to accurately simulate the time-course decay of E. coli in synthetic urine. The inactivation rate constant values obtained in concentrated urine samples, ammonium buffer solutions and carbonate buffer solutions indicated that the osmotic pressure was a relatively predominant cause for the inactivation of E. coli. The appropriate storage time was estimated using the approach of quantitative microbial risk assessment, which indicated that the 5-fold concentrated urine could be safely collected after 1-day storage when urea was hydrolyzed, whereas 91-hour storage was required for non-concentrated urine. The occupational risk was not negligible even with 6-month storage at 20 °C when urea was not hydrolyzed, which suggested that the urine storage styles should be clarified more minutely. The present study highlights the importance of "predictive environmental microbiology," which deals with inactivation kinetic models of microorganisms under varied environmental conditions to fully implement the hazard analysis and critical control point (HACCP) approach for the safe use of human excreta in agriculture.


Assuntos
Escherichia coli , Saneamento , Microbiologia Ambiental , Microbiologia de Alimentos , Humanos , Cinética , Temperatura
16.
Nature ; 500(7460): 73-6, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23883928

RESUMO

The planarian Dugesia japonica can regenerate a complete individual from a head, trunk or tail fragment via activation of somatic pluripotent stem cells. About a century ago, Thomas Hunt Morgan attempted to explain the extraordinary regenerative ability of planarians by positing two opposing morphogenetic gradients of formative "head stuff" and "tail stuff" along the anterior-posterior axis. However, Morgan's hypothesis remains open to debate. Here we show that extracellular signal-related kinase (ERK) and Wnt/ß-catenin signalling pathways establish a solid framework for planarian regeneration. Our data suggest that ERK signalling forms a spatial gradient in the anterior region during regeneration. The fibroblast growth factor receptor-like gene nou-darake (which serves as an output of ERK signalling in the differentiating head) and posteriorly biased ß-catenin activity negatively regulate ERK signalling along the anterior-posterior axis in distinct manners, and thereby posteriorize regenerating tissues outside the head region to reconstruct a complete head-to-tail axis. On the basis of this knowledge about D. japonica, we proposed that ß-catenin signalling is responsible for the lack of head-regenerative ability of tail fragments in the planarian Phagocata kawakatsui, and our confirmation thereof supports the notion that posterior ß-catenin signalling negatively modulates the ERK signalling involved in anteriorization across planarian species. These findings suggest that ERK signalling has a pivotal role in triggering globally dynamic differentiation of stem cells in a head-to-tail sequence through a default program that promotes head tissue specification in the absence of posteriorizing signals. Thus, we have confirmed the broad outline of Morgan's hypothesis, and refined it on the basis of our proposed default property of planarian stem cells.


Assuntos
Padronização Corporal/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal/efeitos dos fármacos , Diferenciação Celular , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Cabeça/fisiologia , Lógica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fenótipo , Planárias/efeitos dos fármacos , Receptores de Fatores de Crescimento de Fibroblastos/química , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/deficiência , beta Catenina/genética , beta Catenina/metabolismo
17.
Bioinformatics ; 33(22): 3635-3637, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036533

RESUMO

MOTIVATION: Along with the increasing accessibility to comprehensive sequence information, such as whole genomes and transcriptomes, the demand for assessing their quality has been multiplied. To this end, metrics based on sequence lengths, such as N50, have become a standard, but they only evaluate one aspect of assembly quality. Conversely, analyzing the coverage of pre-selected reference protein-coding genes provides essential content-based quality assessment, but the currently available pipelines for this purpose, CEGMA and BUSCO, do not have a user-friendly interface to serve as a uniform environment for assembly completeness assessment. RESULTS: Here, we introduce a brand-new web server, gVolante, which provides an online tool for (i) on-demand completeness assessment of sequence sets by means of the previously developed pipelines CEGMA and BUSCO and (ii) browsing pre-computed completeness scores for publicly available data in its database section. Completeness assessments performed on gVolante report scores based on not just the coverage of reference genes but also on sequence lengths (e.g. N50 scaffold length), allowing quality control in multiple aspects. Using gVolante, one can compare the quality of original assemblies between their multiple versions (obtained through program choice and parameter tweaking, for example) and evaluate them in comparison to the scores of public resources found in the database section. AVAILABILITY AND IMPLEMENTATION: gVoalte is freely available at https://gvolante.riken.jp/. CONTACT: shigehiro.kuraku@riken.jp.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Software , Perfilação da Expressão Gênica/normas , Genômica/normas , Padrões de Referência
18.
Dev Growth Differ ; 60(6): 341-353, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29900546

RESUMO

Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior ß-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian ß-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.


Assuntos
Proteínas de Helminto/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Planárias/enzimologia , Regeneração/fisiologia , Animais , Planárias/citologia
19.
Oecologia ; 188(3): 901-912, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191297

RESUMO

The dietary utilization of cyanobacterial carbon by fish communities is poorly understood. We examined the transfer of cyanobacterial carbon to fish in a eutrophic lake using fatty acid biomarkers and measuring the stable carbon isotope ratios of fatty acid and bulk nitrogen. We collected five species of fish (Hypomesus nipponensis, Carassius sp., Cyprinus carpio, Tridentiger brevispinis, and Gymnogobius castaneus) as well as the seston from June to November 2016 from Lake Hachiro, Japan. Cyanobacterial blooms were observed from August to October. From June to August, cyanobacterial fatty acid biomarkers (18:2ω6 and 18:3ω3) accounted for only 1.4-4.3% of total fatty acids in these fish species, indicating a low contribution of cyanobacteria to fish diets during this period. However, the contribution of the cyanobacterial fatty acid biomarkers in these fish species increased sharply in September (10.5-17.1%), except in second-year H. nipponensis. In September, the stable carbon isotope ratios of 18:3ω3 in these fish species were almost equivalent to those in the seston, which was primarily composed of cyanobacteria. The trophic positions of the collected fish species ranged from 1.6 to 3.4, based on their stable nitrogen isotope values, indicating that some fish ingested cyanobacteria directly, while others acquired cyanobacteria indirectly, through the food chain. These findings indicate that cyanobacterial carbon is transferred up the food chain in eutrophic lake ecosystems with cyanobacterial blooms.


Assuntos
Carpas , Cianobactérias , Animais , Carbono , Ecossistema , Ácidos Graxos , Cadeia Alimentar , Japão , Lagos
20.
Dev Growth Differ ; 58(3): 260-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26948408

RESUMO

Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well-visualized in living intact animals under normal bright-field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf-related gene (DjrafA) and mek-related gene (DjmekA) we identified both play a major role in the activation of extracellular signal-regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi-induced defects on gut tube remodeling in a time-saving initial screening using blood-feeding without immunohistochemical detection of the gut. Thus, this blood-feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians.


Assuntos
Sangue/metabolismo , Sistema Digestório/metabolismo , Métodos de Alimentação , Planárias/fisiologia , Regeneração/fisiologia , Animais , Butadienos/farmacologia , Diagnóstico por Imagem/métodos , Inibidores Enzimáticos/farmacologia , Fluorescência , Imuno-Histoquímica , Hibridização In Situ , MAP Quinase Quinase Quinases/classificação , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Nitrilas/farmacologia , Planárias/genética , Planárias/metabolismo , Interferência de RNA , Regeneração/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus laevis , Quinases raf/classificação , Quinases raf/genética , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA