Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 29(10): 1500-1508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419664

RESUMO

The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro. RNA tags in the Escherichia coli 50S subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild-type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.


Assuntos
Escherichia coli , RNA Ribossômico , RNA Ribossômico/genética , RNA Ribossômico/análise , Escherichia coli/genética , Ribossomos/genética , Ribossomos/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/química , Subunidades Ribossômicas Maiores , RNA Bacteriano/genética , RNA Bacteriano/química , Proteínas Ribossômicas
2.
Nucleic Acids Res ; 51(4): 1880-1894, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36660825

RESUMO

The ribosome serves as the universally conserved translator of the genetic code into proteins and supports life across diverse temperatures ranging from below freezing to above 120°C. Ribosomes are capable of functioning across this wide range of temperatures even though the catalytic site for peptide bond formation, the peptidyl transferase center, is nearly universally conserved. Here we find that Thermoproteota, a phylum of thermophilic Archaea, substitute cytidine for uridine at large subunit rRNA positions 2554 and 2555 (Escherichia coli numbering) in the A loop, immediately adjacent to the binding site for the 3'-end of A-site tRNA. We show by cryo-EM that E. coli ribosomes with uridine to cytidine mutations at these positions retain the proper fold and post-transcriptional modification of the A loop. Additionally, these mutations do not affect cellular growth, protect the large ribosomal subunit from thermal denaturation, and increase the mutational robustness of nucleotides in the peptidyl transferase center. This work identifies sequence variation across archaeal ribosomes in the peptidyl transferase center that likely confers stabilization of the ribosome at high temperatures and develops a stable mutant bacterial ribosome that can act as a scaffold for future ribosome engineering efforts.


Assuntos
Peptidil Transferases , RNA Ribossômico , RNA Ribossômico/metabolismo , Peptidil Transferases/metabolismo , Escherichia coli/genética , Archaea/genética , Sequência de Bases , Ribossomos/metabolismo , Bactérias/genética , Sítios de Ligação , Uridina/metabolismo , Citidina/metabolismo , RNA Ribossômico 23S/metabolismo , RNA Bacteriano/metabolismo
3.
Biochemistry ; 59(48): 4533-4545, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231432

RESUMO

RNA thermosensors (RNATs), found in the 5' untranslated region (UTR) of some bacterial messenger RNAs (mRNAs), control the translation of the downstream gene in a temperature-dependent manner. In Listeria monocytogenes, the expression of a key transcription factor, PrfA, is mediated by an RNAT in its 5' UTR. PrfA functions as a master regulator of virulence in L. monocytogenes, controlling the expression of many virulence factors. The temperature-regulated expression of PrfA by its RNAT element serves as a signal of successful host invasion for the bacteria. Structurally, the prfA RNAT bears little resemblance to known families of RNATs, and prior studies demonstrated that the prfA RNAT is highly responsive over a narrow temperature range. Herein, we have undertaken a comprehensive mutational and thermodynamic analysis to ascertain the molecular determinants of temperature sensitivity. We provide evidence to support the idea that the prfA RNAT unfolding is different from that of cssA, a well-characterized RNAT, suggesting that these RNATs function via distinct mechanisms. Our data show that the unfolding of the prfA RNAT occurs in two distinct events and that the internal loops play an important role in mediating the cooperativity of RNAT unfolding. We further demonstrated that regions distal to the ribosome binding site (RBS) not only contribute to RNAT structural stability but also impact translation of the downstream message. Our collective results provide insight connecting the thermal stability of the prfA RNAT structure, unfolding energetics, and translational control.


Assuntos
Proteínas de Bactérias/química , Fatores de Terminação de Peptídeos/química , RNA Bacteriano/química , Regiões 5' não Traduzidas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Magnésio/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Potássio/metabolismo , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Termodinâmica
4.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617247

RESUMO

Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. While advances in deep learning enable the prediction of accurate protein structural models, RNA structure prediction is not possible at present due to a lack of abundant high-quality reference data. Furthermore, available sequence data are generally not associated with organismal phenotypes that could inform RNA function. We created GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB). GARNET links RNA sequences derived from GTDB genomes to experimental and predicted optimal growth temperatures of GTDB reference organisms. This enables construction of deep and diverse RNA sequence alignments to be used for machine learning. Using GARNET, we define the minimal requirements for a sequence- and structure-aware RNA generative model. We also develop a GPT-like language model for RNA in which triplet tokenization provides optimal encoding. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identified mutations in ribosomal RNA that confer increased thermostability to the Escherichia coli ribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.

5.
RSC Chem Biol ; 3(5): 571-581, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35656484

RESUMO

Replacing the native porphyrin cofactor in haem proteins has led to the development of novel designer proteins for a variety of applications. In most cases, haem analogues bind in a way that is comparable to the iron porphyrin, but this is not necessarily the case for complexes bearing non-exchangeable ligands. This study probes how a P[double bond, length as m-dash]O corrole binds to functionally disparate hemoproteins: a haem-dependent oxygen sensor (H-NOX) and a haem-scavenging protein (HasA). The results demonstrate that the protein-cofactor interactions are distinct from the native, haem-bound holoprotein. In H-NOX, the P[double bond, length as m-dash]O unit primarily hydrogen bonds with the haem-ligating histidine (H102), rather than the hydrogen-bonding network that stabilises the Fe(ii)-O2 complex in the native protein. In the absence of H102, the protein is still able to bind the corrole, albeit at reduced levels. Molecular dynamics simulations were utilised to determine the flexibility of apo H-NOX and revealed the coupled motion of key residues necessary for corrole binding. In the case of HasA, the P[double bond, length as m-dash]O unit does not primarily interact with either the haem-ligating histidine (H32) or tyrosine (Y75). Instead, histidine 83, the hydrogen-bonding partner for Y75, is critical for P[double bond, length as m-dash]O corrole binding. The conformation of HasA is interrogated by site-specifically labelling the protein and exploiting Förster resonance energy transfer (FRET) to determine the dye-cofactor distance. HasA reconstituted with the P[double bond, length as m-dash]O corrole exhibits an extended, apo-like conformation. Together, these results demonstrate that non-natural cofactors can bind to proteins in unexpected ways and highlight the need to uncover these interactions for the further development of designer haem proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA