Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Mol Psychiatry ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806692

RESUMO

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

2.
Mol Psychiatry ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036604

RESUMO

Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.

3.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19766573

RESUMO

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Assuntos
Proteoglicanas/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Eletroencefalografia , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Proteoglicanas/análise , Proteoglicanas/genética , Receptores de AMPA/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/genética
4.
Cereb Cortex ; 33(10): 6273-6281, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36627246

RESUMO

When we attentively listen to an individual's speech, our brain activity dynamically aligns to the incoming acoustic input at multiple timescales. Although this systematic alignment between ongoing brain activity and speech in auditory brain areas is well established, the acoustic events that drive this phase-locking are not fully understood. Here, we use magnetoencephalographic recordings of 24 human participants (12 females) while they were listening to a 1 h story. We show that whereas speech-brain coupling is associated with sustained acoustic fluctuations in the speech envelope in the theta-frequency range (4-7 Hz), speech tracking in the low-frequency delta (below 1 Hz) was strongest around onsets of speech, like the beginning of a sentence. Crucially, delta tracking in bilateral auditory areas was not sustained after onsets, proposing a delta tracking during continuous speech perception that is driven by speech onsets. We conclude that both onsets and sustained components of speech contribute differentially to speech tracking in delta- and theta-frequency bands, orchestrating sampling of continuous speech. Thus, our results suggest a temporal dissociation of acoustically driven oscillatory activity in auditory areas during speech tracking, providing valuable implications for orchestration of speech tracking at multiple time scales.


Assuntos
Córtex Auditivo , Percepção da Fala , Feminino , Humanos , Fala , Estimulação Acústica/métodos , Magnetoencefalografia/métodos , Percepção Auditiva
5.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977636

RESUMO

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Assuntos
Epilepsia , Convulsões , Animais , Feminino , Humanos , Camundongos , Epilepsia/metabolismo , Hipocampo/metabolismo , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões/genética , Convulsões/metabolismo
6.
Neuroimage ; 258: 119395, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718023

RESUMO

The systematic alignment of low-frequency brain oscillations with the acoustic speech envelope signal is well established and has been proposed to be crucial for actively perceiving speech. Previous studies investigating speech-brain coupling in source space are restricted to univariate pairwise approaches between brain and speech signals, and therefore speech tracking information in frequency-specific communication channels might be lacking. To address this, we propose a novel multivariate framework for estimating speech-brain coupling where neural variability from source-derived activity is taken into account along with the rate of envelope's amplitude change (derivative). We applied it in magnetoencephalographic (MEG) recordings while human participants (male and female) listened to one hour of continuous naturalistic speech, showing that a multivariate approach outperforms the corresponding univariate method in low- and high frequencies across frontal, motor, and temporal areas. Systematic comparisons revealed that the gain in low frequencies (0.6 - 0.8 Hz) was related to the envelope's rate of change whereas in higher frequencies (from 0.8 to 10 Hz) it was mostly related to the increased neural variability from source-derived cortical areas. Furthermore, following a non-negative matrix factorization approach we found distinct speech-brain components across time and cortical space related to speech processing. We confirm that speech envelope tracking operates mainly in two timescales (δ and θ frequency bands) and we extend those findings showing shorter coupling delays in auditory-related components and longer delays in higher-association frontal and motor components, indicating temporal differences of speech tracking and providing implications for hierarchical stimulus-driven speech processing.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica , Feminino , Humanos , Magnetoencefalografia , Masculino , Análise Multivariada , Fala
7.
Cell Mol Life Sci ; 78(3): 1029-1050, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32468095

RESUMO

Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2-/- mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2-/- mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2-/- mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2-/- mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2-/- were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2-/- phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better  performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.


Assuntos
Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Neurônios/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Envelhecimento , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Cromatografia Líquida de Alta Pressão , Giro Denteado/metabolismo , Análise Discriminante , Família de Proteínas EGF/deficiência , Família de Proteínas EGF/genética , Feminino , Fígado/metabolismo , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Componente Principal , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/deficiência , Receptores de Ácidos Lisofosfatídicos/genética , Espectrometria de Massas em Tandem
8.
Mol Psychiatry ; 25(11): 3108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30602735

RESUMO

Following the publication of this article the authors noted that Torfi Sigurdsson's name was misspelled. Instead of Sigrudsson it should be Sigurdsson. The PDF and HTML versions of the paper have been modified accordingly. The authors would like to apologise for this error and the inconvenience this may have caused.

9.
Cell Mol Neurobiol ; 40(8): 1327-1338, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32172457

RESUMO

Neurons of the central nervous system (CNS) that project long axons into the spinal cord have a poor axon regenerative capacity compared to neurons of the peripheral nervous system. The corticospinal tract (CST) is particularly notorious for its poor regeneration. Because of this, traumatic spinal cord injury (SCI) is a devastating condition that remains as yet uncured. Based on our recent observations that direct neuronal interleukin-4 (IL-4) signaling leads to repair of axonal swellings and beneficial effects in neuroinflammation, we hypothesized that IL-4 acts directly on the CST. Here, we developed a tissue culture model for CST regeneration and found that IL-4 promoted new growth cone formation after axon transection. Most importantly, IL-4 directly increased the regenerative capacity of both murine and human CST axons, which corroborates its regenerative effects in CNS damage. Overall, these findings serve as proof-of-concept that our CST regeneration model is suitable for fast screening of new treatments for SCI.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Humanos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/farmacologia , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo
10.
EMBO J ; 34(16): 2162-81, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26157010

RESUMO

The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell-cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics of JNK signaling, its role in genomewide transcriptional reprogramming, and involved downstream effectors during EMT remain largely unknown. Here, we show that JNK is not required for initiation, but progression of phenotypic changes associated with EMT. Such dependency resulted from JNK-driven transcriptional reprogramming of critical EMT genes and involved changes in their chromatin state. Furthermore, we identified eight novel JNK-induced transcription factors that were required for proper EMT. Three of these factors were also highly expressed in invasive cancer cells where they function in gene regulation to maintain mesenchymal identity. These factors were also induced during neuronal development and function in neuronal migration in vivo. These comprehensive findings uncovered a kinetically distinct role for the JNK pathway in defining the transcriptome that underlies mesenchymal identity and revealed novel transcription factors that mediate these responses during development and disease.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Mesoderma/fisiologia , Ciclo Celular , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo
11.
Mol Psychiatry ; 23(8): 1699-1710, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29743582

RESUMO

Lysophosphatidic acid (LPA) is a synaptic phospholipid, which regulates cortical excitation/inhibition (E/I) balance and controls sensory information processing in mice and man. Altered synaptic LPA signaling was shown to be associated with psychiatric disorders. Here, we show that the LPA-synthesizing enzyme autotaxin (ATX) is expressed in the astrocytic compartment of excitatory synapses and modulates glutamatergic transmission. In astrocytes, ATX is sorted toward fine astrocytic processes and transported to excitatory but not inhibitory synapses. This ATX sorting, as well as the enzymatic activity of astrocyte-derived ATX are dynamically regulated by neuronal activity via astrocytic glutamate receptors. Pharmacological and genetic ATX inhibition both rescued schizophrenia-related hyperexcitability syndromes caused by altered bioactive lipid signaling in two genetic mouse models for psychiatric disorders. Interestingly, ATX inhibition did not affect naive animals. However, as our data suggested that pharmacological ATX inhibition is a general method to reverse cortical excitability, we applied ATX inhibition in a ketamine model of schizophrenia and rescued thereby the electrophysiological and behavioral schizophrenia-like phenotype. Our data show that astrocytic ATX is a novel modulator of glutamatergic transmission and that targeting ATX might be a versatile strategy for a novel drug therapy to treat cortical hyperexcitability in psychiatric disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/efeitos dos fármacos , Transtornos Mentais/tratamento farmacológico , Inibição Neural/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Sinapses/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Ketamina , Lisofosfolipídeos/farmacologia , Transtornos Mentais/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Diester Fosfórico Hidrolases/genética , Proteoglicanas/genética , Proteoglicanas/metabolismo , Psicotrópicos/farmacologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Cereb Cortex ; 27(1): 131-145, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909001

RESUMO

Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation.


Assuntos
Axônios/fisiologia , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/metabolismo , Redes e Vias Metabólicas/fisiologia , Crescimento Neuronal/fisiologia , Fosfolipídeos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Células Cultivadas , Camundongos
13.
Cereb Cortex ; 26(7): 3260-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980613

RESUMO

Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Transmissão Sináptica/fisiologia , Tálamo/metabolismo , Vibrissas/fisiologia , Animais , Proteínas de Ligação a Calmodulina/genética , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Equilíbrio Postural/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Percepção do Tato/fisiologia , Caminhada/fisiologia
14.
EMBO J ; 31(13): 2908-21, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22588079

RESUMO

The small GTPase RhoG plays a central role in actin remodelling during diverse biological processes such as neurite outgrowth, cell migration, phagocytosis of apoptotic cells, and the invasion of pathogenic bacteria. Although it is known that RhoG stimulates neurite outgrowth in the rat pheochromocytoma PC12 cell line, neither the physiological function nor the regulation of this GTPase in neuronal differentiation is clear. Here, we identify RhoG as an inhibitor of neuronal process complexity, which is regulated by the microRNA miR-124. We find that RhoG inhibits dendritic branching in hippocampal neurons in vitro and in vivo. RhoG also inhibits axonal branching, acting via an ELMO/Dock180/Rac1 signalling pathway. However, RhoG inhibits dendritic branching dependent on the small GTPase Cdc42. Finally, we show that the expression of RhoG in neurons is suppressed by the CNS-specific microRNA miR-124 and connect the regulation of RhoG expression by miR-124 to the stimulation of neuronal process complexity. Thus, RhoG emerges as a cellular conductor of Rac1 and Cdc42 activity, in turn regulated by miR-124 to control axonal and dendritic branching.


Assuntos
Proteínas de Transporte/metabolismo , GTP Fosfo-Hidrolases/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Dendritos/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
15.
Anal Chem ; 87(3): 1749-56, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25548943

RESUMO

Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 µm. Quantification of lipid species is achieved by the inclusion of internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method with successive polarity shifting, high-resolution Fourier transform mass spectrometry (FTMS), and fragmentation analysis. We benchmarked the performance of the PLESA approach for in-depth lipidome analysis by comparing it to conventional lipid extraction of excised tissue homogenates and by mapping the spatial distribution and molar abundance of 170 molecular lipid species across different anatomical mouse brain regions.


Assuntos
Encéfalo/metabolismo , Lipídeos/análise , Extração Líquido-Líquido/instrumentação , Espectrometria de Massas/instrumentação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Immunol ; 191(11): 5594-602, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24146044

RESUMO

Although mechanisms leading to brain-specific inflammation and T cell activation have been widely investigated, regulatory mechanisms of local innate immune cells in the brain are only poorly understood. In this study, to our knowledge we show for the first time that MHC class II(+)CD40(dim)CD86(dim)IL-10(+) microglia are potent inducers of Ag-specific CD4(+)Foxp3(+) regulatory T cells (Tregs) in vitro. Microglia differentially regulated MHC class II expression, costimulatory molecules, and IL-10 depending on the amount of IFN-γ challenge and Ag dose, promoting either effector T cell or Treg induction. Microglia-induced Tregs were functionally active in vitro by inhibiting Ag-specific proliferation of effector T cells, and in vivo by attenuating experimental autoimmune encephalomyelitis disease course after adoptive transfer. These results indicate that MHC class II(+)CD40(dim)CD86(dim)IL-10(+) microglia have regulatory properties potentially influencing local immune responses in the CNS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/imunologia , Microglia/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Tolerância Imunológica , Interferon gama/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Cereb Cortex ; 24(1): 199-210, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042740

RESUMO

Central nervous system (CNS) inflammation involves the generation of inducible cytokines such as interferons (IFNs) and alterations in brain activity, yet the interplay of both is not well understood. Here, we show that in vivo elevation of IFNs by viral brain infection reduced hyperpolarization-activated currents (Ih) in cortical pyramidal neurons. In rodent brain slices directly exposed to type I IFNs, the hyperpolarization-activated cyclic nucleotide (HCN)-gated channel subunit HCN1 was specifically affected. The effect required an intact type I receptor (IFNAR) signaling cascade. Consistent with Ih inhibition, IFNs hyperpolarized the resting membrane potential, shifted the resonance frequency, and increased the membrane impedance. In vivo application of IFN-ß to the rat and to the mouse cerebral cortex reduced the power of higher frequencies in the cortical electroencephalographic activity only in the presence of HCN1. In summary, these findings identify HCN1 channels as a novel neural target for type I IFNs providing the possibility to tune neural responses during the complex event of a CNS inflammation.


Assuntos
Córtex Cerebral/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Interferon Tipo I/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Animais , Western Blotting , Córtex Cerebral/citologia , Simulação por Computador , Citocinas/fisiologia , Eletroencefalografia , Fenômenos Eletrofisiológicos/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Interferon Tipo I/biossíntese , Interferon beta/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interferon/fisiologia , Transdução de Sinais/fisiologia , Transfecção
18.
Proc Natl Acad Sci U S A ; 109(29): 11836-41, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753484

RESUMO

The expansion of the neocortex during mammalian brain evolution results primarily from an increase in neural progenitor cell divisions in its two principal germinal zones during development, the ventricular zone (VZ) and the subventricular zone (SVZ). Using mRNA sequencing, we analyzed the transcriptomes of fetal human and embryonic mouse VZ, SVZ, and cortical plate. In mouse, the transcriptome of the SVZ was more similar to that of the cortical plate than that of the VZ, whereas in human the opposite was the case, with the inner and outer SVZ being highly related to each other despite their cytoarchitectonic differences. We describe sets of genes that are up- or down-regulated in each germinal zone. These data suggest that cell adhesion and cell-extracellular matrix interactions promote the proliferation and self-renewal of neural progenitors in the developing human neocortex. Notably, relevant extracellular matrix-associated genes include distinct sets of collagens, laminins, proteoglycans, and integrins, along with specific sets of growth factors and morphogens. Our data establish a basis for identifying novel cell-type markers and open up avenues to unravel the molecular basis of neocortex expansion during evolution.


Assuntos
Evolução Biológica , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Células-Tronco/citologia , Transcriptoma/genética , Análise de Variância , Animais , Adesão Celular/fisiologia , Análise por Conglomerados , Primers do DNA/genética , Feto/metabolismo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Microdissecção e Captura a Laser , Camundongos , Reação em Cadeia da Polimerase , Análise de Componente Principal , RNA Mensageiro/genética , Análise de Sequência de RNA
19.
Proteomics ; 14(21-22): 2607-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211037

RESUMO

Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion-mobility enhanced data-independent label-free LC-MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3-based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replicates. Identified proteins play pivotal roles in neurological and synaptic processes providing a rich resource for studies on hippocampal PSD function as well as on the pathogenesis of neuropsychiatric disorders. All MS data have been deposited in the ProteomeXchange with identifier PXD000590 (http://proteomecentral.proteomexchange.org/dataset/PXD000590).


Assuntos
Hipocampo/química , Densidade Pós-Sináptica/química , Proteínas/análise , Proteômica , Animais , Camundongos
20.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198165

RESUMO

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Estudos de Coortes , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA