RESUMO
Addressing the need for modulated spin configurations is crucial, as they serve as the foundational building blocks for next-generation spintronics, particularly in atomically thin structures and at room temperature. In this work, we realize intrinsic ferromagnetism in monolayer flakes and tunable ferro-/antiferromagnetism in (Fe0.56Co0.44)5GeTe2 antiferromagnets. Remarkably, the ferromagnetic ordering (≥1 L) and antiferromagnetic ordering (≥4 L) remain discernible up to room temperature. The TC (â¼310 K) of the monolayer flakes sets a record high for known exfoliated monolayer van der Waals magnets. Within the framework of A-type antiferromagnetism, a notable odd-even layer-number effect at elevated temperatures (T = 150 K) is observed. Of particular interest is the strong ferromagnetic order in even-layer flakes at low temperatures. The intricate interplay among magnetic field strength, layer number, and temperature gives rise to a diverse array of phenomena, holding promise not only for new physics but also for practical applications.
RESUMO
MAXPEEM, a dedicated photoemission electron microscopy beamline at MAXâ IV Laboratory, houses a state-of-the-art aberration-corrected spectroscopic photoemission and low-energy electron microscope (AC-SPELEEM). This powerful instrument offers a wide range of complementary techniques providing structural, chemical and magnetic sensitivities with a single-digit nanometre spatial resolution. The beamline can deliver a high photon flux of ≥1015â photonsâ s-1 (0.1% bandwidth)-1 in the range 30-1200â eV with full control of the polarization from an elliptically polarized undulator. The microscope has several features which make it unique from similar instruments. The X-rays from the synchrotron pass through the first beam separator and impinge the surface at normal incidence. The microscope is equipped with an energy analyzer and an aberration corrector which improves both the resolution and the transmission compared with standard microscopes. A new fiber-coupled CMOS camera features an improved modulation transfer function, dynamic range and signal-to-noise ratio compared with the traditional MCP-CCD detection system.
RESUMO
A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS2 complexes. The intrinsic semiconducting property of MoS2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability.
RESUMO
The growth, morphology, structure, and stoichiometry of ultrathin praseodymium oxide layers on Ru(0001) were studied using low-energy electron microscopy and diffraction, photoemission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. At a growth temperature of 760 °C, the oxide is shown to form hexagonally close-packed (A-type) Pr2O3(0001) islands that are up to 3 nm high. Depending on the local substrate step density, the islands either adopt a triangular shape on sufficiently large terraces or acquire a trapezoidal shape with the long base aligned along the substrate steps.
RESUMO
After having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles. Complementary structural and spectroscopic measurements probing long-range and local order reveal that lattice strain influences the nature of the valence band and modifies the subtle stereochemical activity of the Pb(2+) lone-pair. More generally, this work demonstrates that the stereochemical activity of the lone-pair at the metal site is a specific physicochemical parameter coupled to composition, size and strain, which can be employed to engineer novel functionalities in OHLP nanomaterials.
RESUMO
2D van der Waals (vdW) magnets are gaining attention in fundamental physics and advanced spintronics, due to their unique dimension-dependent magnetism and potential for ultra-compact integration. However, achieving intrinsic ferromagnetism with high Curie temperature (TC) remains a technical challenge, including preparation and stability issues. Herein, an applicable electrochemical intercalation strategy to decouple interlayer interaction and guide charge doping in antiferromagnet VOCl, thereby inducing robust room-temperature ferromagnetism, is developed. The expanded vdW gap isolates the neighboring layers and shrinks the distance between the V-V bond, favoring the generation of ferromagnetic (FM) coupling with perpendicular magnetic anisotropy. Element-specific X-ray magnetic circular dichroism (XMCD) directly proves the source of the ferromagnetism. Detailed experimental results and density functional theory (DFT) calculations indicate that the charge doping enhances the FM interaction by promoting the orbital hybridization between t2 g and eg. This work sheds new light on a promising way to achieve room-temperature ferromagnetism in antiferromagnets, thus addressing the critical materials demand for designing spintronic devices.
RESUMO
2D van der Waals (vdW) antiferromagnets have received intensive attention due to their terahertz resonance, multilevel magnetic-order states, and ultrafast spin dynamics. However, accurately identifying their magnetic configuration still remains a challenge owing to the lack of net magnetization and insensitivity to external fields. In this work, the Néel-type antiferromagnetic (AFM) order in 2D antiferromagnet VPS3 with the out-of-plane anisotropy, which is demonstrated by the temperature-dependent spin-phonon coupling and second-harmonic generation (SHG), is experimentally probed. This long-range AFM order even persists at the ultrathin limit. Furthermore, strong interlayer exciton-magnon coupling (EMC) upon the Néel-type AFM order is detected based on the monolayer WSe2 /VPS3 heterostructure, which induces an enhanced excitonic state and further certifies the Néel-type AFM order of VPS3 . The discovery provides optical routes as the novel platform to study 2D antiferromagnets and promotes their potential applications in magneto-optics and opto-spintronic devices.
RESUMO
The synthesis of two-dimensional (2D) transition metals has attracted growing attention for both fundamental and application-oriented investigations, such as 2D magnetism, nanoplasmonics and non-linear optics. However, the large-area synthesis of this class of materials in a single-layer form poses non-trivial difficulties. Here we present the synthesis of a large-area 2D gold layer, stabilized in between silicon carbide and monolayer graphene. We show that the 2D-Au ML is a semiconductor with the valence band maximum 50 meV below the Fermi level. The graphene and gold layers are largely non-interacting, thereby defining a class of van der Waals heterostructure. The 2D-Au bands, exhibit a 225 meV spin-orbit splitting along the [Formula: see text] direction, making it appealing for spin-related applications. By tuning the amount of gold at the SiC/graphene interface, we induce a semiconductor to metal transition in the 2D-Au, which has not yet been observed and hosts great interest for fundamental physics.
RESUMO
We develop a method for patterning a buried two-dimensional electron gas (2DEG) in silicon using low kinetic energy electron stimulated desorption (LEESD) of a monohydride resist mask. A buried 2DEG forms as a result of placing a dense and narrow profile of phosphorus dopants beneath the silicon surface; a so-called δ-layer. Such 2D dopant profiles have previously been studied theoretically, and by angle-resolved photoemission spectroscopy, and have been shown to host a 2DEG with properties desirable for atomic-scale devices and quantum computation applications. Here we outline a patterning method based on low kinetic energy electron beam lithography, combined with in situ characterization, and demonstrate the formation of patterned features with dopant concentrations sufficient to create localized 2DEG states.
RESUMO
Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene.
RESUMO
Echoing the roaring success of their bulk counterparts, nano-objects built from organolead halide perovskites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the photoinduced charge dynamics is essential for optimizing the optoelectronic functionalities. However, mapping the carrier-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales. By correlating ultrafast time-resolved optical and X-ray absorption measurements, this work reveals the photoinduced formation of strong-coupling polarons in CH3NH3PbBr3 nanoparticles. Such polarons originate from the self-trapping of electrons in the Coulombic field caused by the displaced inorganic nuclei and the oriented organic cations. The transient structural change detected at the Pb L3 X-ray absorption edge is well-captured by a distortion with average bond elongation in the [PbBr6]2- motif. General implications for designing novel OLHP nanomaterials targeting the active utilization of these quasi-particles are outlined.
RESUMO
An investigation of how electron/photon beam exposures affect the intercalation rate of Na deposited on graphene prepared on Si-face SiC is presented. Focused radiation from a storage ring is used for soft X-ray exposures while the electron beam in a low energy electron microscope is utilized for electron exposures. The microscopy and core level spectroscopy data presented clearly show that the effect of soft X-ray exposure is significantly greater than of electron exposure, i.e., it produces a greater increase in the intercalation rate of Na. Heat transfer from the photoelectrons generated during soft X-ray exposure and by the electrons penetrating the sample during electron beam exposure is suggested to increase the local surface temperature and thus the intercalation rate. The estimated electron flux density is 50 times greater for soft X-ray exposure compared to electron exposure, which explains the larger increase in the intercalation rate from soft X-ray exposure. Effects occurring with time only at room temperature are found to be fairly slow, but detectable. The graphene quality, i.e., domain/grain size and homogeneity, was also observed to be an important factor since exposure-induced effects occurred more rapidly on a graphene sample prepared in situ compared to on a furnace grown sample.
RESUMO
Characteristics of nanoscale materials are often different from the corresponding bulk properties providing new, sometimes unexpected, opportunities for applications. Here we investigate the properties of 8 nm colloidal nanoparticles of MAPbBr3 perovskites and contrast them to the ones of large microcrystallites representing a bulk. X-ray spectroscopies provide an exciton binding energy of 0.32 ± 0.10 eV in the nanoparticles. This is 5 times higher than the value of bulk crystals (0.084 ± 0.010 eV), and readily explains the high fluorescence quantum yield in nanoparticles. In the bulk, at high excitation concentrations, the fluorescence intensity has quadratic behavior following the Saha-Langmuir model due to the nongeminate recombination of charges forming the emissive exciton states. In the nanoparticles, a linear dependence is observed since the excitation concentration per particle is significantly less than one. Even the bulk shows linear emission intensity dependence at lower excitation concentrations. In this case, the average excitation spacing becomes larger than the carrier diffusion length suppressing the nongeminate recombination. From these considerations we obtain the charge carrier diffusion length in MAPbBr3 of 100 nm.
Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Medições Luminescentes , Nanopartículas/química , Espectroscopia Fotoeletrônica , FótonsRESUMO
Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of â¼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.