Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
2.
Arch Biochem Biophys ; 691: 108491, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32707090

RESUMO

The relationships between conformational dynamics, stability and protein function are not obvious. Frataxin (FXN) is an essential protein that forms part of a supercomplex dedicated to the iron-sulfur (Fe-S) cluster assembly within the mitochondrial matrix. In humans, the loss of FXN expression or a decrease in its functionality results in Friedreich's Ataxia, a cardio-neurodegenerative disease. Recently, the way in which FXN interacts with the rest of the subunits of the supercomplex was uncovered. This opens a window to explore relationships between structural dynamics and function. In this study, we prepared a set of FXN variants spanning a broad range of conformational stabilities. Variants S160I, S160M and A204R were more stable than the wild-type and showed similar biological activity. Additionally, we prepared SILCAR, a variant that combines S160I, L203C and A204R mutations. SILCAR was 2.4 kcal mol-1 more stable and equally active. Some of the variants were significantly more resistant to proteolysis than the wild-type FXN. SILCAR showed the highest resistance, suggesting a more rigid structure. It was corroborated by means of molecular dynamics simulations. Relaxation dispersion NMR experiments comparing SILCAR and wild-type variants suggested similar internal motions in the microsecond to millisecond timescale. Instead, variant S157I showed higher denaturation resistance but a significant lower function, similarly to that observed for the FRDA variant N146K. We concluded that the contribution of particular side chains to the conformational stability of FXN might be highly subordinated to their impact on both the protein function and the stability of the functional supercomplex.


Assuntos
Proteínas de Ligação ao Ferro/química , Liases de Carbono-Enxofre/química , Biologia Computacional , Humanos , Proteínas de Ligação ao Ferro/genética , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteólise , Frataxina
3.
Subcell Biochem ; 93: 393-438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31939159

RESUMO

Mammalian frataxin is a small mitochondrial protein involved in iron sulfur cluster assembly. Frataxin deficiency causes the neurodegenerative disease Friedreich's Ataxia. Valuable knowledge has been gained on the structural dynamics of frataxin, metal-ion-protein interactions, as well as on the effect of mutations on protein conformation, stability and internal motions. Additionally, laborious studies concerning the enzymatic reactions involved have allowed for understanding the capability of frataxin to modulate Fe-S cluster assembly function. Remarkably, frataxin biological function depends on its interaction with some proteins to form a supercomplex, among them NFS1 desulfurase and ISCU, the scaffolding protein. By combining multiple experimental tools including high resolution techniques like NMR and X-ray, but also SAXS, crosslinking and mass-spectrometry, it was possible to build a reliable model of the structure of the desulfurase supercomplex NFS1/ACP-ISD11/ISCU/frataxin. In this chapter, we explore these issues showing how the scientific view concerning frataxin structure-function relationships has evolved over the last years.


Assuntos
Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/genética , Humanos , Proteínas de Ligação ao Ferro/genética , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X , Frataxina
4.
Biochemistry ; 58(46): 4596-4609, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31664822

RESUMO

In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas Reguladoras de Ferro/química , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Ligação de Hidrogênio , Proteínas Reguladoras de Ferro/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
5.
Biochim Biophys Acta Proteins Proteom ; 1867(11): 140254, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344531

RESUMO

The neurodegenerative disease Friedreich ataxia results from a deficiency of frataxin, a mitochondrial protein. Most patients have a GAA expansion in the first intron of both alleles of frataxin gene, whereas a minority of them are heterozygous for the expansion and contain a mutation in the other allele. Frataxin has been claimed to participate in iron homeostasis and biosynthesis of FeS clusters, however its role in both pathways is not unequivocally defined. In this work we combined different advanced spectroscopic analyses to explore the iron-binding properties of human frataxin, as isolated and at the FeS clusters assembly machinery. For the first time we used EPR spectroscopy to address this key issue providing clear evidence of the formation of a complex with a low symmetry coordination of the metal ion. By 2D NMR, we confirmed that iron can be bound in both oxidation states, a controversial issue, and, in addition, we were able to point out a transient interaction of frataxin with a N-terminal 6his-tagged variant of ISCU, the scaffold protein of the FeS clusters assembly machinery. To obtain insights on structure/function relationships relevant to understand the disease molecular mechanism(s), we extended our studies to four clinical frataxin mutants. All variants showed a moderate to strong impairment in their ability to activate the FeS cluster assembly machinery in vitro, while keeping the same iron-binding features of the wild type protein. This supports the multifunctional nature of frataxin and the complex biochemical consequences of its mutations.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro/química , Ferro/química , Mutação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Frataxina
6.
ACS Chem Biol ; 13(6): 1455-1462, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29737835

RESUMO

Iron-sulfur clusters are essential cofactors in many biochemical processes. ISD11, one of the subunits of the protein complex that carries out the cluster assembly in mitochondria, is necessary for cysteine desulfurase NFS1 stability and function. Several authors have recently provided evidence showing that ISD11 interacts with the acyl carrier protein (ACP). We carried out the coexpression of human mitochondrial ACP and ISD11 in E. coli. This work shows that ACP and ISD11 form a soluble, structured, and stable complex able to bind to the human NFS1 subunit modulating its activity. Results suggest that ACP plays a key-role in ISD11 folding and stability in vitro. These findings offer the opportunity to study the mechanism of interaction between ISD11 and NFS1.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Liases de Carbono-Enxofre/metabolismo , Humanos , Mitocôndrias/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
7.
FEBS Open Bio ; 8(3): 390-405, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29511616

RESUMO

Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA