Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Biol Evol ; 37(1): 167-182, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518427

RESUMO

Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype-environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.


Assuntos
Aptidão Genética , Hibridização Genética , Saccharomyces/genética , Estresse Fisiológico , Cromossomos Fúngicos , Interação Gene-Ambiente
2.
Mol Ecol ; 28(6): 1491-1505, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520198

RESUMO

Hybridization can induce transposons to jump into new genomic positions, which may result in their accumulation across the genome. Alternatively, transposon copy numbers may increase through nonallelic (ectopic) homologous recombination in highly repetitive regions of the genome. The relative contribution of transposition bursts versus recombination-based mechanisms to evolutionary processes remains unclear because studies on transposon dynamics in natural systems are rare. We assessed the genomewide distribution of transposon insertions in a young hybrid lineage ("invasive Cottus", n = 11) and its parental species Cottus rhenanus (n = 17) and Cottus perifretum(n = 9) using a reference genome assembled from long single molecule pacbio reads. An inventory of transposable elements was reconstructed from the same data and annotated. Transposon copy numbers in the hybrid lineage increased in 120 (15.9%) out of 757 transposons studied here. The copy number increased on average by 69% (range: 10%-197%). Given the age of the hybrid lineage, this suggests that they have proliferated within a few hundred generations since admixture began. However, frequency spectra of transposon insertions revealed no increase in novel and rare insertions across assembled parts of the genome. This implies that transposons were added to repetitive regions of the genome that remain difficult to assemble. Future studies will need to evaluate whether recombination-based mechanisms rather than genomewide transposition may explain the majority of the recent transposon proliferation in the hybrid lineage. Irrespectively of the underlying mechanism, the observed overabundance in repetitive parts of the genome suggests that gene-rich regions are unlikely to be directly affected.


Assuntos
Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Peixes/genética , Animais , Genoma/genética , Hibridização Genética
3.
J Exp Zool B Mol Dev Evol ; 330(2): 96-108, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29504232

RESUMO

The postembryonic development of amphibians has been characterized as divided into three predominant periods, hereafter named primary developmental stages: premetamorphosis (PreM), prometamorphosis (ProM), metamorphic climax (Meta), and completion of metamorphosis (PostM), largely based on examination of anuran development. Here, we categorized the postembryonic development of larvae of a poisonous fire salamander (Salamandra salamandra) by integrating morphology and gene expression (transcriptomic) data. Morphological analysis revealed three distinct clusters suggestive of PreM, ProM, and Meta, which were confirmed in parallel by microarray-derived gene expression analysis. In total, 3,510 probes targeted transcripts differentially expressed between the clusters we identified. Genes upregulated in PreM related to organogenesis, and those upregulated in Meta underlie structural proteins and related to development of anatomical structures and pigmentation. Biosynthesis pathways of pigments (pteridines and melanin) were upregulated during late ProM and Meta. Gas chromatographic analysis of alkaloids indicated the onset of steroidal alkaloid biosynthesis at ProM. When comparing gene expression in the fire salamander to that in other amphibians-three anurans, Xenopus laevis, X. tropicalis, and Michrohyla fissipes, and one caudate, Ambystoma mexicanum- we identified genes with conserved expression patterns involved in basic metamorphic processes such as skin restructuring and tail fin resorption. Our results support that primary stages of postembryonic development in caudates are homologous to those of anurans, and offer a baseline for the study of the evolution of developmental modes.


Assuntos
Perfilação da Expressão Gênica/veterinária , Urodelos/crescimento & desenvolvimento , Urodelos/genética , Alcaloides/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento
4.
Mol Ecol ; 27(12): 2698-2713, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29742304

RESUMO

Transcriptomes of organisms reveal differentiation associated with the use of different habitats. However, this leaves open how much of the observed differentiation can be attributed to genetic differences or to transcriptional plasticity. In this study, we disentangle causes of differential gene expression in larvae of the European fire salamander from the Kottenforst forest in Germany. Larvae inhabit permanent streams and ephemeral ponds and represent an example of a young evolutionary split associated with contrasting ecological conditions. We hypothesized that adaptation towards differences in water temperature plays a role because the thermal regime between stream and pond habitats differs notably. Tissue samples from tail fins of larvae were collected to study gene expression using microarrays. We found ample evidence for differentiation among larvae occupying different habitats in nature with 2,800 of 11,797 genes being differentially expressed. We then quantified transcriptional plasticity towards temperature and genetic differentiation based on controlled temperature laboratory experiments. Gene-by-environment interactions modelling revealed that 28% of the gene expression divergence observed among samples in nature could be attributed to plasticity related to water temperature. Expression patterns of only a small number of 101 genes were affected by the genotype. Our analysis demonstrates that effects of environmental factors must be taken into account to explain variation of gene expression in salamanders in nature. Notwithstanding, it provides first evidence that genetic factors determined gene expression divergence between pond and stream ecotypes and could be involved in adaptive evolution.


Assuntos
Expressão Gênica/genética , Larva/genética , Urodelos/genética , Adaptação Fisiológica/genética , Animais , Ecossistema , Ecótipo , Deriva Genética , Genótipo , Alemanha , Fenótipo , Lagoas , Rios , Temperatura
5.
J Evol Biol ; 31(9): 1254-1267, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29927009

RESUMO

Ecological speciation and adaptive radiation are key processes shaping northern temperate freshwater fish diversity. Both often involve parapatric differentiation between stream and lake populations and less often, sympatric intralacustrine diversification into habitat- and resource-associated ecotypes. However, few taxa have been studied, calling for studies of others to investigate the generality of these processes. Here, we test for diversification within catchments in freshwater sculpins in a network of peri-Alpine lakes and streams. Using 8047 and 13 182 restriction site-associated (RADseq) SNPs, respectively, we identify three deeply divergent phylogeographic lineages associated with different major European drainages. Within the Aare catchment, we observe populations from geographically distant lakes to be genetically more similar to each other than to populations from nearby streams. This pattern is consistent with two distinct colonization waves, rather than by parapatric ecological speciation after a single colonization wave. We further find two distinct depth distribution modes in three lakes of the Aare catchment, one in very shallow and one in very deep water, and significant genomewide differentiation between these in one lake. Sculpins in the Aare catchment appear to represent an early-stage adaptive radiation involving the evolution of a lacustrine lineage distinct from parapatric stream sculpins and the repeated onset of depth-related intralacustrine differentiation.


Assuntos
Especiação Genética , Genética Populacional , Perciformes/classificação , Animais , Ecossistema , Lagos , Filogeografia , Rios , Análise de Sequência de DNA , Suíça
6.
Mol Ecol ; 26(1): 25-42, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27541083

RESUMO

Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence.


Assuntos
Adaptação Biológica/genética , Ecótipo , Fluxo Gênico , Perciformes/genética , Animais , Estuários , Água Doce , Genoma , Herança Multifatorial
7.
Mol Ecol ; 26(18): 4712-4724, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28390096

RESUMO

Evolutionary dynamics of structural genetic variation in lineages of hybrid origin is not well explored, although structural mutations may increase in controlled hybrid crosses. We therefore tested whether structural variants accumulate in a fish of recent hybrid origin, invasive Cottus, relative to both parental species Cottus rhenanus and Cottus perifretum. Copy-number variation in exons of 10,979 genes was assessed using comparative genome hybridization arrays. Twelve genes showed significantly higher copy numbers in invasive Cottus compared to both parents. This coincided with increased expression for three genes related to vision, detoxification and muscle development, suggesting possible gene dosage effects. Copy number increases of putative transposons were assessed by comparative mapping of genomic DNA reads against a de novo assembly of 1,005 repetitive elements. In contrast to exons, copy number increases of repetitive elements were common (20.7%) in invasive Cottus, whereas decrease was very rare (0.01%). Among the increased repetitive elements, 53.8% occurred at higher numbers in C. perifretum compared to C. rhenanus, while only 1.4% were more abundant in C. rhenanus. This implies a biased mutational process that amplifies genetic material from one ancestor. To assess the frequency of de novo mutations through hybridization, we screened 64 laboratory-bred F2 offspring between the parental species for copy-number changes at five candidate loci. We found no evidence for new structural variants, indicating that they are too rare to be detected given our sampling scheme. Instead, they must have accumulated over more generations than we observed in a controlled cross.


Assuntos
Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Hibridização Genética , Perciformes/genética , Animais , Evolução Biológica , Espécies Introduzidas
8.
Mol Phylogenet Evol ; 115: 16-26, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28716741

RESUMO

The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a compelling example of how classical node support metrics such as bootstrap and Bayesian posterior probability can provide high confidence values in a phylogenomic topology even if the phylogenetic signal for some nodes is spurious, highlighting the importance of complementary approaches such as gene jackknifing. Yet, the general congruence among the topologies recovered from the RNAseq and RADseq data sets increases our confidence in the results, and validates the use of phylotranscriptomic approaches for reconstructing shallow relationships among closely related taxa. We hypothesize that the evolution of Salamandra has been characterized by episodes of introgressive hybridization, which would explain the difficulties of fully reconstructing their evolutionary relationships.


Assuntos
Salamandra/classificação , Animais , Teorema de Bayes , Evolução Biológica , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Polimorfismo de Nucleotídeo Único , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Salamandra/genética , Análise de Sequência de DNA , Transcriptoma
9.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26354934

RESUMO

Despite their deeply conserved function among vertebrates, ectodysplasin (Eda) signalling genes are involved in microevolutionary change in humans and sticklebacks. If such a dual role is common, Eda signalling genes constitute hotspots for morphological evolution. Variation in sculpin (Cottus) skin prickling and body shape resembles patterns caused by variation in Eda signalling in sticklebacks. We mapped Eda signalling genes and performed quantitative trait locus mapping in crosses between Cottus rhenanus and Cottus perifretum. A genomic region containing the Eda receptor (Edar) was strongly associated with prickling and contributed to shape. The expression of Edar in developing prickles and skeletal elements in Cottus was confirmed by in situ hybridization. Coding sequence changes between Edar alleles in C. rhenanus and C. perifretum exceeded sequence differentiation in other vertebrates. However, it is likely that additional genetic elements besides coding changes affect the phenotypic variation. Although the phenotype in a natural hybrid lineage between C. rhenanus and C. perifretum resembles C. perifretum, the respective coding Edar alleles are not fully fixed (88.6%). Hence, our results support an involvement of Eda signalling in microevolutionary changes, but imply that the Edar gene is affected by multiple evolutionary processes that vary among freshwater sculpins.


Assuntos
Evolução Biológica , Padronização Corporal/genética , Ectodisplasinas/genética , Hibridização Genética , Perciformes/genética , Receptores da Ectodisplasina/genética , Transdução de Sinais , Animais , Epiderme/anatomia & histologia , Genética Populacional , Perciformes/classificação , Fenótipo
10.
Trends Genet ; 26(2): 54-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20044166

RESUMO

Natural hybridization between closely related taxa is a common phenomenon in both plants and animals. Hybridization has often been viewed as a destructive force that could erode established gene pools, but it is increasingly being recognized as a potentially creative force in evolution because it can lead to a mixture of novel genotypes, some of which have the potential for rapid adaptation to new environmental conditions. However, the evolutionary dynamics leading to the emergence of newly adapted gene pools after hybridization are largely unexplored. Here, we argue that the identification and analysis of the dynamic processes that occur after the first contact deserve specific attention, because this is the phase where hybrid speciation is most different from other forms of speciation.


Assuntos
Especiação Genética , Hibridização Genética , Animais , Genótipo , Humanos , Seleção Genética
11.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493080

RESUMO

Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.


Assuntos
Oryzias , Animais , Feminino , Filogenia , Reprodução/genética , Lagos , Hibridização Genética
12.
Mol Ecol ; 21(19): 4797-810, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22650446

RESUMO

Models on hybrid speciation assume that hybridization generates increased phenotypic variance that is utilized to invade new adaptive peaks. We test to what extent this prediction can be traced using gene expression data in the fish species Cottus perifretum and Cottus rhenanus as well as a natural hybrid lineage referred to as invasive sculpins. In addition, interspecies crosses were used to explore evolutionary trajectories from initial stages to the hybrid lineage. EST (expressed sequence tag) libraries were sequenced to design an oligonucleotide microarray that was calibrated for probe-specific differences in binding behaviour. Levels of gene expression divergence between species correlate with genetic divergence at neutral markers and, accordingly, invasive sculpins were intermediate between the parental species overall. However, the hybrid lineage is distinguished through unique patterns of gene expression that are enriched for biological functions which represent candidates for the fitness properties of invasive sculpins. We compare F(2) crosses with natural invasive sculpins to show that the variance in gene expression decreases in invasives. Moreover, few of the transgressive patterns of gene expression that distinguish invasives can be directly observed in F(2) crosses. This suggests that the invasive transcriptome was subject to secondary changes after admixture. The result is in line with an evolutionary process that reduces maladaptive variance and optimizes the phenotype of an emerging hybrid lineage.


Assuntos
Hibridização Genética , Perciformes/genética , Transcriptoma , Animais , Bélgica , Etiquetas de Sequências Expressas , Genética Populacional , Alemanha , Espécies Introduzidas , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Perciformes/classificação
13.
Evolution ; 76(5): 1033-1051, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334114

RESUMO

The evolution of complex phenotypes like reproductive strategies is challenging to understand, as they often depend on multiple adaptations that only jointly result in a specific functionality. Sulawesi ricefishes (Adrianichthyidae) evolved a reproductive strategy termed as pelvic brooding. In contrast to the more common transfer brooding, female pelvic brooders carry an egg bundle connected to their body for weeks until the fry hatches. To examine the genetic architecture of pelvic brooding, we crossed the pelvic brooding Oryzias eversi and the transfer brooding Oryzias nigrimas (species divergence time: ∼3.6 my). We hypothesize, that a low number of loci and modularity have facilitated the rapid evolution of pelvic brooding. Traits associated to pelvic brooding, like rib length, pelvic fin length, and morphology of the genital papilla, were correlated in the parental species but correlations were reduced or lost in their F1 and F2 hybrids. Using the Castle-Wright estimator, we found that generally few loci underlie the studied traits. Further, both parental species showed modularity in their body plans. In conclusion, morphological traits related to pelvic brooding were based on a few loci and the mid-body region likely could evolve independently from the remaining body parts. Both factors presumably facilitated the evolution of pelvic brooding.


Assuntos
Oryzias , Adaptação Fisiológica , Animais , Feminino , Indonésia , Fenótipo , Reprodução
14.
Curr Biol ; 32(3): 715-724.e4, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34932936

RESUMO

The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel "plug" tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation.


Assuntos
Eutérios , Placenta , Animais , Embrião de Mamíferos , Feminino , Inflamação/genética , Gravidez , Reprodução
15.
Mol Ecol ; 20(9): 1803-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21634055

RESUMO

Invasive species receive attention as manifestations of global ecological change and because of the effects that they may have on other organisms. They are commonly discussed in the context of the ecological perturbations or the human activities that permitted the invasion. There is also evidence, that there is an intrinsic component to biological invasions in that evolutionary changes of the invaders themselves can facilitate or limit invasions (Lee 2002; Urban et al. 2007; Van Bocxlaer et al. 2010). Hence, teasing apart whether environmental change or changes of the organism foster invasions is an interesting field of research. Ample evidence for plants and animals documents that ecological change and human activities trigger range expansions and invasions, but questions regarding evolutionary change of invaders remain less explored although there are several reasons to believe it matters. Firstly, rapid evolutionary change is possible in time-frames relevant for contemporary biological invasions(Hendry et al. 2007). Furthermore, population genetic modelling suggests that there are circumstances where the range expansion and colonization of empty spaces in the course of an invasion can induce evolutionary change in a way that is specific to invaders: the process of repeated founding out of marginal populations in the course of a range expansion can shift allele frequencies and has been referred to as allele surfing, which not only affects neutral genetic variance, but also fitness relevant traits (Klopfstein et al. 2006; Travis et al. 2007; Burton & Travis 2008). Importantly, this process poses a null model for evolutionary inference in invasive populations. It predicts conspicuous allele frequency changes in an expanding metapopulation unless migration homogenizes the gene pool. Despite this relevance, ideas about allele surfing rely heavily on modelling although some experimental evidence comes from studies that document the segregation of genetic variants in growing plaques of bacteria (Hallatschek et al. 2007). To date, little empirical data is available that would reveal the migration processes that affect the establishment of gene pools at invasion fronts in natural systems. This aspect sets the study of Bronnenhuber et al. (2011) apart. They quantify migration behind the expansion front of an invading fish and thus provide important baseline data for the interpretation of the emerging patterns of genetic differentiation.


Assuntos
Evolução Biológica , Espécies Introduzidas , Dinâmica Populacional , Adaptação Biológica , Animais , Ecologia , Peixes/genética , Frequência do Gene/genética , Pool Gênico , Deriva Genética , Variação Genética , Atividades Humanas , Humanos , Modelos Biológicos , Plantas
16.
Mol Ecol ; 20(7): 1475-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21251111

RESUMO

Homoploid hybridization after secondary contact between related species can lead to mixtures of genotypes which have the potential for rapid adaptation to new environmental conditions. Here, we focus on a case where anthropogenic changes within the past 200 years have allowed the hybridization between two fish species (Cottus rhenanus and Cottus perifretum) in the Netherlands. Specifically, we address the question of the dynamics of the emergence of these hybrids and invasion of the river systems. Using a set of 81 mostly ancestry-informative SNP markers, as well as broad sample coverage in and around the area of the initial contact, we find a structured hybrid swarm with at least three distinct hybrid lineages that have emerged out of this secondary contact situation. We show that genetically coherent groups can occur at geographically distant locations, while geographically adjacent groups can be genetically different, indicating that some form of reproductive isolation between the lineages is already effective. Using a newly developed modelling approach, we test the relative influence of founding admixture, drift and migration on the allele compositions of the sampling sites. We find that the allele frequency distributions can best be explained if continued gene flow between the parental species and the hybrid lineages is invoked. Genome mapping of the invasive lineage in the Rhine shows that major chromosomal rearrangements were not involved in creating this distinct lineage. Our results show that hybridization after secondary contact can quickly lead to multiple independent new lineages that have the capacity to form hybrid species.


Assuntos
Especiação Genética , Hibridização Genética , Perciformes/genética , Adaptação Fisiológica/genética , Animais , Mapeamento Cromossômico , DNA Mitocondrial/análise , Frequência do Gene , Marcadores Genéticos , Genótipo , Humanos , Modelos Genéticos , Países Baixos , Polimorfismo de Nucleotídeo Único , Rios
17.
Mol Ecol ; 20(3): 545-59, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21143332

RESUMO

As populations adapt to novel environments, divergent selection will promote heterogeneous genomic differentiation via reductions in gene flow for loci underlying adaptive traits. Using a data set of over 100 SNP markers, genome scans were performed to investigate the effect of natural selection maintaining differentiation in five lakes harbouring sympatric pairs of normal and dwarf lake whitefish (Coregonus clupeaformis). A variable proportion of SNPs (between 0% and 12%) was identified as outliers, which corroborated the predicted intensity of competitive interactions unique to each lake. Moreover, strong reduction in heterozygosity was typically observed for outlier loci in dwarf but not in normal whitefish, indicating that directional selection has been acting on standing genetic variation more intensively in dwarf whitefish. SNP associations in backcross hybrid progeny identified 16 genes exhibiting genotype-phenotype associations for four adaptive traits (growth, swimming activity, gill rakers and condition factor). However, neither simple relationship between elevated levels of genetic differentiation with adaptive phenotype nor conspicuous genetic signatures for parallelism at outlier loci were detected, which underscores the importance of independent evolution among lakes. The integration of phenotypic, transcriptomic and functional genomic information identified two candidate genes (sodium potassium ATPase and triosephosphate isomerase) involved in the recent ecological divergence of lake whitefish. Finally, the identification of several markers under divergent selection suggests that many genes, in an environment-specific manner, are recruited by selection and ultimately contributed to the repeated ecological speciation of a dwarf phenotype.


Assuntos
Estudos de Associação Genética , Especiação Genética , Polimorfismo de Nucleotídeo Único/genética , Salmonidae/genética , Seleção Genética , Adaptação Biológica/genética , Animais , Ecossistema , Perfilação da Expressão Gênica , Fluxo Gênico , Variação Genética , Genoma , Genótipo , Lagos , New England , Fenótipo , Quebeque , Salmonidae/crescimento & desenvolvimento
18.
BMC Ecol Evol ; 21(1): 57, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879056

RESUMO

BACKGROUND: Pelvic brooding is a form of uni-parental care, and likely evolved in parallel in two lineages of Sulawesi ricefishes. Contrary to all other ricefishes, females of pelvic brooding species do not deposit eggs at a substrate (transfer brooding), but carry them until the fry hatches. We assume that modifications reducing the costs of egg carrying are beneficial for pelvic brooding females, but likely disadvantageous in conspecific males, which might be resolved by the evolution of sexual dimorphism via sexual antagonistic selection. Thus we hypothesize that the evolution of pelvic brooding gave rise to female-specific skeletal adaptations that are shared by both pelvic brooding lineages, but are absent in conspecific males and transfer brooding species. To tackle this, we combine 3D-imaging and morphometrics to analyze skeletal adaptations to pelvic brooding. RESULTS: The morphology of skeletal traits correlated with sex and brooding strategy across seven ricefish species. Pelvic brooding females have short ribs caudal of the pelvic girdle forming a ventral concavity and clearly elongated and thickened pelvic fins compared to both sexes of transfer brooding species. The ventral concavity limits the body cavity volume in female pelvic brooders. Thus body volumes are smaller compared to males in pelvic brooding species, a pattern sharply contrasted by transfer brooding species. CONCLUSIONS: We showed in a comparative framework that highly similar, sexually dimorphic traits evolved in parallel in both lineages of pelvic brooding ricefish species. Key traits, present in all pelvic brooding females, were absent or much less pronounced in conspecific males and both sexes of transfer brooding species, indicating that they are non-beneficial or even maladaptive for ricefishes not providing extended care. We assume that the combination of ventral concavity and robust, elongated fins reduces drag of brooding females and provides protection and stability to the egg cluster. Thus ricefishes are one of the rare examples where environmental factors rather than sexual selection shaped the evolution of sexually dimorphic skeletal adaptations.


Assuntos
Oryzias , Caracteres Sexuais , Animais , Feminino , Indonésia , Masculino , Fenótipo , Reprodução
19.
Mol Ecol ; 19 Suppl 1: 115-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20331775

RESUMO

Next-generation sequencing allows the discovery of large numbers of single nucleotide polymorphisms (SNPs) in species where little genomic information was previously available. Here, we assembled, de novo, over 130 mb of non-normalized cDNA using 454 pyrosequencing data from dwarf and normal lake whitefish and backcross hybrids. Our main goals were to gather a large data set of SNP markers, document their distribution within coding regions, evaluate the effect of species divergence on allele frequencies and combine results with previous genomic studies to identify candidate genes underlying the adaptive divergence of lake whitefish. We identified 6094 putative SNPs in 2674 contigs (mean size: 576 bp, range: 101-6116) and 1540 synonymous and 1734 non-synonymous mutations for a genome-wide non-synonymous to synonymous substitution rate ratio (p(N)/p(S)) of 0.37. As expected based on the young age (<15 000 years) of whitefish species pair, the overall level of divergence between them was relatively weak. Yet, 89 SNPs showed pronounced allele frequency differences between sympatric normal and dwarf whitefish. Among these, SNPs in genes annotated to energy metabolic functions were the most abundant and this, in addition to previous experimental data at the gene expression and phenotypic level, brings compelling evidence that genes involved in energy metabolism are prime candidates explaining the adaptive divergence of lake whitefish species pairs. Finally, we unexpectedly identified 44 contigs annotated to transposable elements and these were predominantly composed of backcross hybrids sequences. This indicates an elevated activity of transposable elements, which could potentially contribute to the reduced fitness of hybrids previously documented.


Assuntos
Perfilação da Expressão Gênica , Genética Populacional , Polimorfismo de Nucleotídeo Único , Salmonidae/genética , Adaptação Biológica/genética , Animais , Quimera , Mapeamento de Sequências Contíguas , Elementos de DNA Transponíveis , Mineração de Dados , Metabolismo Energético/genética , Frequência do Gene , Genótipo , Fenótipo , Locos de Características Quantitativas , Salmonidae/classificação , Seleção Genética , Análise de Sequência de DNA/métodos
20.
Mol Ecol ; 19(24): 5389-403, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21087448

RESUMO

Gene expression divergence is one of the mechanisms thought to be involved in the emergence of incipient species. Next-generation sequencing has become an extremely valuable tool for the study of this process by allowing whole transcriptome sequencing, or RNA-Seq. We have conducted a 454 GS-FLX pyrosequencing experiment to refine our understanding of adaptive divergence between dwarf and normal lake whitefish species (Coregonus clupeaformis spp.). The objectives were to: (i) investigate transcriptomic divergence as measured by liver RNA-Seq; (ii) test the correlation between divergence in expression and sequence polymorphism; and (iii) investigate the extent of allelic imbalance. We also compared the results of RNA-seq with those of a previous microarray study performed on the same fish. Following de novo assembly, results showed that normal whitefish overexpressed more contigs associated with protein synthesis while dwarf fish overexpressed more contigs related to energy metabolism, immunity and DNA replication and repair. Moreover, 63 SNPs showed significant allelic imbalance, and this phenomenon prevailed in the recently diverged dwarf whitefish. Results also showed an absence of correlation between gene expression divergence as measured by RNA-Seq and either polymorphism rate or sequence divergence between normal and dwarf whitefish. This study reiterates an important role for gene expression divergence, and provides evidence for allele-specific expression divergence as well as evolutionary decoupling of regulatory and coding sequences in the adaptive divergence of normal and dwarf whitefish. It also demonstrates how next-generation sequencing can lead to a more comprehensive understanding of transcriptomic divergence in a young species pair.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Salmonidae/genética , Animais , Genética Populacional , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA