Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(9): 4974-4987, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35474142

RESUMO

Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.


Assuntos
Cromossomos , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , DNA/química , Humanos , Conformação Molecular , Translocação Genética
2.
Clin Oral Implants Res ; 34(6): 565-574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906917

RESUMO

OBJECTIVES: To develop and assess the performance of a novel artificial intelligence (AI)-driven convolutional neural network (CNN)-based tool for automated three-dimensional (3D) maxillary alveolar bone segmentation on cone-beam computed tomography (CBCT) images. MATERIALS AND METHODS: A total of 141 CBCT scans were collected for performing training (n = 99), validation (n = 12), and testing (n = 30) of the CNN model for automated segmentation of the maxillary alveolar bone and its crestal contour. Following automated segmentation, the 3D models with under- or overestimated segmentations were refined by an expert for generating a refined-AI (R-AI) segmentation. The overall performance of CNN model was assessed. Also, 30% of the testing sample was randomly selected and manually segmented to compare the accuracy of AI and manual segmentation. Additionally, the time required to generate a 3D model was recorded in seconds (s). RESULTS: The accuracy metrics of automated segmentation showed an excellent range of values for all accuracy metrics. However, the manual method (95% HD: 0.20 ± 0.05 mm; IoU: 95% ± 3.0; DSC: 97% ± 2.0) showed slightly better performance than the AI segmentation (95% HD: 0.27 ± 0.03 mm; IoU: 92% ± 1.0; DSC: 96% ± 1.0). There was a statistically significant difference of the time-consumed among the segmentation methods (p < .001). The AI-driven segmentation (51.5 ± 10.9 s) was 116 times faster than the manual segmentation (5973.3 ± 623.6 s). The R-AI method showed intermediate time-consumed (1666.7 ± 588.5 s). CONCLUSION: Although the manual segmentation showed slightly better performance, the novel CNN-based tool also provided a highly accurate segmentation of the maxillary alveolar bone and its crestal contour consuming 116 times less than the manual approach.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia Computadorizada de Feixe Cônico/métodos
3.
Clin Oral Investig ; 27(3): 1133-1141, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36114907

RESUMO

OBJECTIVE: To qualitatively and quantitatively assess integrated segmentation of three convolutional neural network (CNN) models for the creation of a maxillary virtual patient (MVP) from cone-beam computed tomography (CBCT) images. MATERIALS AND METHODS: A dataset of 40 CBCT scans acquired with different scanning parameters was selected. Three previously validated individual CNN models were integrated to achieve a combined segmentation of maxillary complex, maxillary sinuses, and upper dentition. Two experts performed a qualitative assessment, scoring-integrated segmentations from 0 to 10 based on the number of required refinements. Furthermore, experts executed refinements, allowing performance comparison between integrated automated segmentation (AS) and refined segmentation (RS) models. Inter-observer consistency of the refinements and the time needed to create a full-resolution automatic segmentation were calculated. RESULTS: From the dataset, 85% scored 7-10, and 15% were within 3-6. The average time required for automated segmentation was 1.7 min. Performance metrics indicated an excellent overlap between automatic and refined segmentation with a dice similarity coefficient (DSC) of 99.3%. High inter-observer consistency of refinements was observed, with a 95% Hausdorff distance (HD) of 0.045 mm. CONCLUSION: The integrated CNN models proved to be fast, accurate, and consistent along with a strong interobserver consistency in creating the MVP. CLINICAL RELEVANCE: The automated segmentation of these structures simultaneously could act as a valuable tool in clinical orthodontics, implant rehabilitation, and any oral or maxillofacial surgical procedures, where visualization of MVP and its relationship with surrounding structures is a necessity for reaching an accurate diagnosis and patient-specific treatment planning.


Assuntos
Implantes Dentários , Dente , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Redes Neurais de Computação
4.
Nano Lett ; 21(1): 762-768, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33342212

RESUMO

We present a synthetic nanoscale piston that uses chemical energy to perform molecular transport against an applied bias. Such a device comprises a 13 by 5 nm protein cylinder, embedded in a biological membrane enclosing a single-stranded DNA (ssDNA) rod. Hybridization with DNA cargo rigidifies the rod, allowing for transport of a selected DNA molecule across the nanopore. A strand displacement reaction from ssDNA fuel on the other side of the membrane then liberates the DNA cargo back into solution and regenerates the initial configuration. The entropic penalty of ssDNA confinement inside the nanopore drives DNA transport regardless of the applied bias. Multiple automated and reciprocating cycles are observed, in which the DNA piston moves through the 10 nm length of the nanopore. In every cycle, a single DNA molecule is transported across the nanopore against an external bias force, which is the hallmark of biological transporters.


Assuntos
Nanoporos , Transporte Biológico Ativo , DNA/genética , DNA de Cadeia Simples , Nanotecnologia
5.
Langmuir ; 35(37): 12276-12283, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31433651

RESUMO

DNA surface-hybridization biosensors utilize the selective hybridization of target sequences in solution to surface-immobilized probes. In this process, the target is usually assumed to be in excess, so that its concentration does not significantly vary while hybridizing to the surface-bound probes. If the target is initially at low concentrations and/or if the number of probes is very large, and they have high affinity for the target, the DNA in solution may become depleted. In this paper we analyze the equilibrium and kinetics of hybridization of DNA biosensors in the case of strong target depletion, by extending the Langmuir adsorption model. We focus, in particular, on the detection of a small amount of a single-nucleotide "mutant" sequence (concentration c2) in a solution, which differs by one or more nucleotides from an abundant "wild-type" sequence (concentration c1 ≫ c2). We show that depletion can give rise to a strongly enhanced sensitivity of the biosensors. Using representative values of rate constants and hybridization free energies, we find that in the depletion regime one could detect relative concentrations c2/c1 that are up to 3 orders of magnitude smaller than in the conventional approach. The kinetics is surprisingly rich and exhibits a nonmonotonic adsorption with no counterpart in the no-depletion case. Finally, we show that, alongside enhanced detection sensitivity, this approach offers the possibility of sample enrichment, by substantially increasing the relative amount of the mutant over the wild-type sequence.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Adsorção , Cinética , Hibridização de Ácido Nucleico , Propriedades de Superfície
6.
Phys Rev Lett ; 121(8): 088101, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192578

RESUMO

Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.


Assuntos
DNA/química , Modelos Químicos , Nucleossomos/química , Simulação por Computador , DNA/metabolismo , DNA Circular/química , DNA Circular/metabolismo , Elasticidade , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Termodinâmica
7.
Phys Rev Lett ; 118(21): 217801, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598642

RESUMO

Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable wormlike chain model. Here we show, by means of analytical results and computer simulations, that these discrepancies can be resolved if a coupling between twist and bend is introduced. We obtain an estimate of 40±10 nm for the twist-bend coupling constant. Our simulations are in good agreement with high-resolution, magnetic-tweezers torque data. Although the existence of twist-bend coupling was predicted long ago [J. Marko and E. Siggia, Macromolecules 27, 981 (1994)MAMOBX0024-929710.1021/ma00082a015], its effects on the mechanical properties of DNA have been so far largely unexplored. We expect that this coupling plays an important role in several aspects of DNA statics and dynamics.


Assuntos
Simulação por Computador , DNA/química , Fenômenos Biomecânicos , Magnetismo , Modelos Moleculares , Conformação de Ácido Nucleico , Torque
8.
J Chem Phys ; 146(21): 214902, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28595422

RESUMO

It is well established that many physical properties of DNA at sufficiently long length scales can be understood by means of simple polymer models. One of the most widely used elasticity models for DNA is the twistable worm-like chain (TWLC), which describes the double helix as a continuous elastic rod with bending and torsional stiffness. An extension of the TWLC, which has recently received some attention, is the model by Marko and Siggia, who introduced an additional twist-bend coupling, expected to arise from the groove asymmetry. By performing computer simulations of two available versions of oxDNA, a coarse-grained model of nucleic acids, we investigate the microscopic origin of twist-bend coupling. We show that this interaction is negligible in the oxDNA version with symmetric grooves, while it appears in the oxDNA version with asymmetric grooves. Our analysis is based on the calculation of the covariance matrix of equilibrium deformations, from which the stiffness parameters are obtained. The estimated twist-bend coupling coefficient from oxDNA simulations is G=30±1 nm. The groove asymmetry induces a novel twist length scale and an associated renormalized twist stiffness κt≈80 nm, which is different from the intrinsic torsional stiffness C≈110 nm. This naturally explains the large variations on experimental estimates of the intrinsic stiffness performed in the past.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Elasticidade
9.
J Dent ; 124: 104238, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872223

RESUMO

OBJECTIVES: The present study investigated the accuracy, consistency, and time-efficiency of a novel deep convolutional neural network (CNN) based model for the automated maxillofacial bone segmentation from cone beam computed tomography (CBCT) images. METHOD: A dataset of 144 scans was acquired from two CBCT devices and randomly divided into three subsets: training set (n = 110), validation set (n = 10) and testing set (n = 24). A three-dimensional (3D) U-Net (CNN) model was developed, and the achieved automated segmentation was compared with a manual approach. RESULTS: The average time required for automated segmentation was 39.1 s with a 204-fold decrease in time consumption compared to manual segmentation (132.7 min). The model was highly accurate for identification of the bony structures of the anatomical region of interest with a dice similarity coefficient (DSC) of 92.6%. Additionally, the fully deterministic nature of the CNN model was able to provide 100% consistency without any variability. The inter-observer consistency for expert-based minor correction of the automated segmentation observed an excellent DSC of 99.7%. CONCLUSION: The proposed CNN model provided a time-efficient, accurate, and consistent CBCT-based automated segmentation of the maxillofacial complex. CLINICAL SIGNIFICANCE: Automated segmentation of the maxillofacial complex could act as an alternative to the conventional segmentation techniques for improving the efficiency of the digital workflows. This approach could deliver accurate and ready-to-print3D models, essential to patient-specific digital treatment planning for orthodontics, maxillofacial surgery, and implant dentistry.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Tomografia Computadorizada de Feixe Cônico , Humanos , Processamento de Imagem Assistida por Computador/métodos
10.
Phys Rev E ; 99(3-1): 032414, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999490

RESUMO

The simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling G between twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here the effect of G on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness C_{eff} for small twist-bend coupling. We find that the "bare" G is "screened" by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with G=0 but with long-wavelength bending and twisting rigidities that are shifted by G-dependent amounts. Using results for torsional and bending rigidities for freely fluctuating DNA, we show how our perturbative results can be extended to a nonperturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo "triad" and molecular dynamics "oxDNA" models, characterized by different degrees of coarse graining, validating the perturbative and nonperturbative analyses. While our theory is in generally good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely used coarse-grained models.


Assuntos
DNA , Modelos Moleculares , Modelos Estatísticos , Algoritmos , Fenômenos Biomecânicos , Simulação por Computador , DNA/química , Elasticidade , Modelos Químicos , Modelos Genéticos , Método de Monte Carlo , Conformação de Ácido Nucleico , Torção Mecânica
11.
J Phys Condens Matter ; 30(30): 304001, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893712

RESUMO

The capture and translocation of biomolecules through nanometer-scale pores are processes with a potentially large number of applications, and hence they have been intensively studied in recent years. The aim of this paper is to review existing models of the capture process by a nanopore, together with some recent experimental data of short single- and double-stranded DNA captured by the Cytolysin A (ClyA) nanopore. ClyA is a transmembrane protein of bacterial origin which has been recently engineered through site-specific mutations, to allow the translocation of double- and single-stranded DNA. A comparison between theoretical estimations and experiments suggests that for both cases the capture is a reaction-limited process. This is corroborated by the observed salt dependence of the capture rate, which we find to be in quantitative agreement with the theoretical predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA