Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell ; 149(6): 1298-313, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682250

RESUMO

Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.


Assuntos
Envelhecimento/metabolismo , Complemento C1q/metabolismo , Via de Sinalização Wnt , Animais , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Soro/metabolismo
2.
Circulation ; 150(5): 374-389, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991046

RESUMO

BACKGROUND: The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS: Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS: Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS: Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.


Assuntos
Insuficiência Cardíaca , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Camundongos Knockout , Animais , Insuficiência Cardíaca/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Camundongos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças
3.
Biochem Biophys Res Commun ; 637: 247-253, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36410273

RESUMO

Dopamine D1 receptor (D1R), coded by the Drd1 gene, is induced in cardiomyocytes of failing hearts, triggering heart failure-associated ventricular arrhythmia, and therefore could be a potential therapeutic target for chronic heart failure. The regulation of D1R expression, however, is not fully understood. Here, we explored the molecular mechanism by which cardiomyocyte D1R is induced in failing hearts. We performed motif analysis for the promoter region of the Drd1 gene using the transcription factor affinity prediction (TRAP) method and identified nuclear factor-kappa B (NF-κB) as a candidate transcriptional factor regulating the expression of the Drd1 gene. We next employed murine models of heart failure from chronic pressure overload by transverse aortic constriction (TAC), and assessed myocardial Drd1 expression levels and NF-κB activity, as well as endoplasmic reticulum (ER) stress, which has been implicated in the pathogenesis of heart failure. Drd1 induction in TAC hearts was dependent on the severity of heart failure, and was associated with NF-κB activation and ER stress, as assessed by p65 phosphorylation and the expression of ER stress-related genes, respectively. We further tested if Drd1 was induced by ER stress via NF-κB activation in cultured neonatal rat ventricular myocytes. Tunicamycin activated NF-κB pathway in an ER stress-dependent manner and increased Drd1 expression. Importantly, inhibition of NF-κB pathway by pretreatment with Bay11-7082 completely suppressed the tunicamycin-induced upregulation of Drd1, suggesting that NF-κB activation is essential to this regulation. Our study demonstrates the pivotal role for the ER stress-induced NF-κB activation in the induction of D1R in cardiomyocytes. Intervention of this pathway might be a potential new therapeutic strategy for heart failure-associated ventricular arrhythmia.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Ratos , Animais , Camundongos , Miócitos Cardíacos , Regulação para Cima , NF-kappa B , Fator B do Complemento , Estresse do Retículo Endoplasmático , Tunicamicina , Receptores de Dopamina D1/genética , Insuficiência Cardíaca/genética , Fatores de Transcrição , Transdução de Sinais
4.
J Am Soc Nephrol ; 32(7): 1599-1615, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33875568

RESUMO

BACKGROUND: The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI). METHODS: We performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that mediates the anti-inflammatory effect of ß2-adrenergic receptor (Adrb2) signaling. We also examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-treated macrophages were used to assess the involvement of macrophage Adrb2 signaling. RESULTS: In vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig and mucin domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol administration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. CONCLUSIONS: The activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and protects against renal IRI.

5.
Int Heart J ; 63(2): 338-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354754

RESUMO

Dilated cardiomyopathy (DCM) is caused by various gene variants and characterized by systolic dysfunction. Lamin variants have been reported to have a poor prognosis. Medical and device therapies are not sufficient to improve the prognosis of DCM with the lamin variants. Recently, induced pluripotent stem (iPS) cells have been used for research on genetic disorders. However, few studies have evaluated the contractile function of cardiac tissue with lamin variants. The aim of this study was to elucidate the function of cardiac cell sheet tissue derived from patients with lamin variant DCM. iPS cells were generated from a patient with lamin A/C (LMNA) -mutant DCM (LMNA p.R225X mutation). After cardiac differentiation and purification, cardiac cell sheets that were fabricated through cultivation on a temperature-responsive culture dish were transferred to the surface of the fibrin gel, and the contractile force was measured. The contractile force and maximum contraction velocity, but not the maximum relaxation velocity, were significantly decreased in cardiac cell sheet tissue with the lamin variant. A qRT-PCR analysis revealed that mRNA expression of some contractile proteins, cardiac transcription factors, Ca2+-handling genes, and ion channels were downregulated in cardiac tissue with the lamin variant.Human iPS-derived bioengineered cardiac tissue with the LMNA p.R225X mutation has the functional properties of systolic dysfunction and may be a promising tissue model for understanding the underlying mechanisms of DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo
6.
J Mol Cell Cardiol ; 152: 29-39, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275937

RESUMO

Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.


Assuntos
Distinções e Prêmios , Insuficiência Cardíaca/terapia , Medicina de Precisão , Animais , Humanos
7.
J Hum Genet ; 66(1): 75-84, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32951011

RESUMO

Cells are minimal functional units in biological phenomena, and therefore single-cell analysis is needed to understand the molecular behavior leading to cellular function in organisms. In addition, omics analysis technology can be used to identify essential molecular mechanisms in an unbiased manner. Recently, single-cell genomics has unveiled hidden molecular systems leading to disease pathogenesis in patients. In this review, I summarize the recent advances in single-cell genomics for the understanding of disease pathogenesis and discuss future perspectives.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma Humano/genética , Genômica/métodos , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Análise de Célula Única/métodos , Epigenômica/métodos , Técnicas de Genotipagem/métodos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Miócitos Cardíacos/citologia , RNA-Seq/métodos
8.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34830403

RESUMO

With the development and advancement of next-generation sequencing (NGS), genetic analysis is becoming more accessible. High-throughput genetic studies using NGS have contributed to unraveling the association between cardiomyopathy and genetic background, as is the case with many other diseases. Rare variants have been shown to play major roles in the pathogenesis of cardiomyopathy, which was empirically recognized as a monogenic disease, and it has been elucidated that the clinical course of cardiomyopathy varies depending on the causative genes. These findings were not limited to dilated and hypertrophic cardiomyopathy; similar trends were reported one after another for peripartum cardiomyopathy (PPCM), cancer therapy-related cardiac dysfunction (CTRCD), and alcoholic cardiomyopathy (ACM). In addition, as the association between clinical phenotypes and the causative genes becomes clearer, progress is being made in elucidating the mechanisms and developing novel therapeutic agents. Recently, it has been suggested that not only rare variants but also common variants contribute to the development of cardiomyopathy. Cardiomyopathy and genetics are approaching a new era, which is summarized here in this overview.


Assuntos
Cardiomiopatias/genética , Cardiomiopatia Alcoólica/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatias/patologia , Cardiomiopatia Alcoólica/patologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/patologia , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fenótipo
10.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172208

RESUMO

Single-cell RNA sequencing (scRNA-seq) technology is a powerful, rapidly developing tool for characterizing individual cells and elucidating biological mechanisms at the cellular level. Cardiovascular disease is one of the major causes of death worldwide and its precise pathology remains unclear. scRNA-seq has provided many novel insights into both healthy and pathological hearts. In this review, we summarize the various scRNA-seq platforms and describe the molecular mechanisms of cardiovascular development and disease revealed by scRNA-seq analysis. We then describe the latest technological advances in scRNA-seq. Finally, we discuss how to translate basic research into clinical medicine using scRNA-seq technology.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Análise de Sequência de RNA/tendências , Sequência de Bases/genética , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise de Célula Única/tendências , Software , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA