Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(3): 110841, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599255

RESUMO

Muga silkworm (Antheraea assamensis), one of the economically important wild silkmoths, is unique among saturniid silkmoths. It is confined to the North-eastern part of India. Muga silk has the highest value among the other silks. Unlike other silkmoths, A. assamensis has a low chromosome number (n = 15), and ZZ/ZO sex chromosome system. Here, we report the first high-quality draft genome of A. assamensis, assembled by employing the Illumina and PacBio sequencing platforms. The assembled genome of A. assamensis is 501.18 Mb long, with 2697 scaffolds and an N50 of 683.23 Kb. The genome encompasses 18,385 protein-coding genes, 86.29% of which were functionally annotated. Phylogenetic analysis of A. assamensis revealed its divergence from other Antheraea species approximately 28.7 million years ago. Moreover, an investigation into detoxification-related gene families, CYP450, GST, and ABC-transporter, revealed a significant expansion in A. assamensis as compared to the Bombyx mori. This expansion is comparable to Spodoptera litura, suggesting adaptive responses linked to the polyphagous behavior observed in these insects. This study provides valuable insights into the molecular basis of evolutionary divergence and adaptations in muga silkmoth. The genome assembly reported in this study will significantly help in the functional genomics studies on A. assamensis and other Antheraea species along with comparative genomics analyses of Bombycoidea insects.


Assuntos
Genoma de Inseto , Mariposas , Filogenia , Animais , Mariposas/genética , Mariposas/classificação , Sequenciamento Completo do Genoma , Anotação de Sequência Molecular
2.
J Neurophysiol ; 132(2): 418-432, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838299

RESUMO

The appropriate growth of the neurons, accurate organization of their synapses, and successful neurotransmission are indispensable for sensorimotor activities. These processes are highly dynamic and tightly regulated. Extensive genetic, molecular, physiological, and behavioral studies have identified many molecular candidates and investigated their roles in various neuromuscular processes. In this article, we show that Beadex (Bx), the Drosophila LIM only (LMO) protein, is required for motor activities and neuromuscular growth of Drosophila. The larvae bearing Bx7, a null allele of Bx, and the RNAi-mediated neuronal-specific knockdown of Bx show drastically reduced crawling behavior, a diminished synaptic span of the neuromuscular junctions (NMJs) and an increased spontaneous neuronal firing with altered motor patterns in the central pattern generators (CPGs). Microarray studies identified multiple targets of Beadex that are involved in different cellular and molecular pathways, including those associated with the cytoskeleton and mitochondria that could be responsible for the observed neuromuscular defects. With genetic interaction studies, we further show that Highwire (Hiw), a negative regulator of synaptic growth at the NMJs, negatively regulates Bx, as the latter's deficiency was able to rescue the phenotype of the Hiw null mutant, HiwDN. Thus, our data indicate that Beadex functions downstream of Hiw to regulate the larval synaptic growth and physiology.NEW & NOTEWORTHY A novel role for Beadex (Bx) regulates the larval neuromuscular junction (NMJ) structure and function in a tissue-specific manner. Bx is expressed in a subset of Toll-6-expressing neurons and is involved in regulating synaptic span and physiology, possibly through its negative interaction with Highwire (Hiw). The findings of this study provide insights into the molecular mechanisms underlying NMJ development and function and warrant further investigation to understand the role of Bx in these processes fully.


Assuntos
Proteínas de Drosophila , Larva , Junção Neuromuscular , Animais , Junção Neuromuscular/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Larva/crescimento & desenvolvimento , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Drosophila melanogaster/crescimento & desenvolvimento , Geradores de Padrão Central/fisiologia , Geradores de Padrão Central/metabolismo , Drosophila
3.
Int Microbiol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502456

RESUMO

Antibiotics are commonly used to treat infectious diseases; however, persistence is often expressed by the pathogenic bacteria and their long-term relative effect on the host have been neglected. The present study investigated the impact of antibiotics in gut microbiota (GM) and metabolism of host. The effect of ampicillin antibiotics on GM of Drosophila melanogaster was analyzed through deep sequencing of 16S rRNA amplicon gene. The dominant phyla consisted of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Planctomycetes, Chloroflexi, Euryarchaeota, Acedobacteria, Verrucomicrobia, and Cyanobacteria. It was found that the composition of GM was significantly altered on administration of antibiotics. On antibiotic treatments, there were decline in relative abundance of Proteobacteria and Firmicutes, while there were increase in relative abundance of Chlorophyta and Bacteroidota. High abundance of 14 genera, viz., Wolbachia, Lactobacillus, Bacillus, Pseudomonas, Thiolamprovum, Pseudoalteromonas, Vibrio, Romboutsia, Staphylococcus, Alteromonas, Clostridium, Lysinibacillus, Litoricola, and Cellulophaga were significant (p ≤ 0.05) upon antibiotic treatment. Particularly, the abundance of Acetobacter was significantly (p ≤ 0.05) declined but increased for Wolbachia. Further, a significant (p ≤ 0.05) increase in Wolbachia endosymbiont of D. melanogaster, Wolbachia endosymbiont of Curculio okumai, and Wolbachia pipientis and a decrease in the Acinetobacter sp. were observed. We observed an increase in functional capacity for biosynthesis of certain nucleotides and the enzyme activities. Further, the decrease in antimicrobial peptide production in the treated group and potential effects on the host's defense mechanisms were observed. This study helps shed light on an often-overlooked dimension, namely the persistence of antibiotics' effects on the host.

4.
Neuroscience ; 551: 1-16, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38763224

RESUMO

Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Locomoção , Neurônios , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Locomoção/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Animais Geneticamente Modificados , Larva , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-bcl-2
5.
Chemosphere ; 350: 141070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160945

RESUMO

Thiomersal (TM) is an excellent preservative that is used in a wide variety of products, like pharmaceuticals, cosmetics, and vaccines, etc. Its usage has been in decline because of safety concerns. Since vaccine production is on the rise, its use may increase further in low-income and developing countries, as a cost-effective vaccine preservative. Further, Thiomersal is still being used as an essential component in various pharmaceutical preparations. In this light, the present study addresses its mechanism of toxicity in zebrafish and unveils a novel strategy for lessening its negative effects by conjugating cysteine to it, while retaining its antibacterial efficacy. We show that the mitochondrial membrane potential is destabilised by TM, leading to the induction of apoptosis. Interestingly, TM-cysteine conjugate (at a ratio of 1:1) showed no toxicity in zebrafish, whereas TM alone was highly toxic. Importantly, assaying for the bactericidal activity, tested using Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA), revealed that the conjugate retains the antibacterial activity, demonstrating that the TM-cysteine conjugate is a safer alternative to TM as a vaccine preservative, and in all the other products that still use TM.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Vacinas , Animais , Timerosal/farmacologia , Peixe-Zebra , Cisteína/farmacologia , Escherichia coli , Conservantes Farmacêuticos , Antibacterianos/toxicidade , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA