Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Infect Immun ; 89(10): e0030721, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310888

RESUMO

Riboflavin is an essential micronutrient, but its transport and utilization have remained largely understudied among pathogenic spirochetes. Here, we show that Borrelia burgdorferi, the zoonotic spirochete that causes Lyme disease, is able to import riboflavin via products of its rfuABCD-like operon as well as synthesize flavin mononucleotide and flavin adenine dinucleotide despite lacking canonical genes for their synthesis. Additionally, a mutant deficient in the rfuABCD-like operon is resistant to the antimicrobial effect of roseoflavin, a natural riboflavin analog, and is attenuated in a murine model of Lyme borreliosis. Our combined results indicate not only that are riboflavin and the maintenance of flavin pools essential for B. burgdorferi growth but also that flavin utilization and its downstream products (e.g., flavoproteins) may play a more prominent role in B. burgdorferi pathogenesis than previously appreciated.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/genética , Doença de Lyme/tratamento farmacológico , Doença de Lyme/microbiologia , Óperon/genética , Riboflavina/farmacologia , Animais , Feminino , Mamíferos/microbiologia , Camundongos , Camundongos Endogâmicos C3H
2.
Eur Biophys J ; 49(8): 729-743, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32761255

RESUMO

It has been known for decades that proteins undergo conformational changes in response to binding ligands. Such changes are usually accompanied by a loss of entropy by the protein, and thus conformational changes are integral to the thermodynamics of ligand association. Methods to detect these alterations are numerous; here, we focus on the sedimentation velocity (SV) mode of AUC, which has several advantages, including ease of use and rigorous data-selection criteria. In SV, it is assumed that conformational changes manifest primarily as differences in the sedimentation coefficient (the s-value). Two methods of determining s-value differences were assessed. The first method used the widely adopted c(s) distribution to gather statistics on the s-value differences to determine whether the observed changes were reliable. In the second method, a decades-old technique called "difference SV" was revived and updated to address its viability in this era of modern instrumentation. Both methods worked well to determine the extent of conformational changes to three model systems. Both simulations and experiments were used to explore the strengths and limitations of the methods. Finally, software incorporating these methodologies was produced.


Assuntos
Ultracentrifugação/métodos , Animais , Bovinos , Hidrodinâmica , Modelos Moleculares , Conformação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/isolamento & purificação
3.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507085

RESUMO

Activation of CD4 T cells by dendritic cells leads to their differentiation into various effector lineages. The nature of the effector lineage is determined by the innate cues provided by dendritic cells to newly primed T cells. Although the cytokines necessary for several effector lineages have been identified, the innate cues that drive T follicular helper (Tfh) lineage cell development remain unclear. Here we found that following priming, CD4 T cells undergoing clonal expansion acquire a transient Tfh-like phenotype before differentiating into other effector lineages. In addition, we found that T cell-intrinsic myeloid differentiation antigen 88 (MyD88) signaling, which occurs downstream of interleukin-1 (IL-1) and IL-18 receptors, is critical for the primed CD4 T cells to transition out of the temporary Tfh lineage. Mice with T cell-specific deletion of MyD88 have a higher proportion of Tfh cells and germinal center (GC) B cells. These exaggerated Tfh cell and GC B cell responses, however, do not lead to protective immunity against infections. We demonstrate that T cell-intrinsic MyD88 is critical for effector lineage differentiation as well as production of the cytokines that are necessary for class switching. Overall, our study establishes that following priming and clonal expansion, CD4 T cells undergo a transitional Tfh-like phase and that further differentiation into effector lineages is dictated by T cell-intrinsic MyD88-dependent cues.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Folículo Ovariano/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Diferenciação Celular/imunologia , Diferenciação Celular/fisiologia , Feminino , Humanos , Folículo Ovariano/fisiologia
4.
Infect Immun ; 84(9): 2566-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27324485

RESUMO

Borrelia burgdorferi survives in nature through a complex tick-mammalian life cycle. During its transit between ticks and mammalian hosts, B. burgdorferi must dramatically alter its outer surface profile in order to interact with and adapt to these two diverse niches. It has been established that the regulator BosR (BB0647) in B. burgdorferi plays important roles in modulating borrelial host adaptation. However, to date, how bosR expression itself is controlled in B. burgdorferi remains largely unknown. Previously, it has been shown that DNA sequences upstream of BosR harbor multiple sites for the binding of recombinant BosR, suggesting that BosR may influence its own expression in B. burgdorferi However, direct experimental evidence supporting this putative autoregulation of BosR has been lacking. Here, we investigated the expression of bosR throughout the tick-mammal life cycle of B. burgdorferi via quantitative reverse transcription (RT)-PCR analyses. Our data indicated that bosR is expressed not only during mouse infection, but also during the tick acquisition, intermolt, and transmission phases. Further investigation revealed that bosR expression in B. burgdorferi is influenced by environmental stimuli, such as temperature shift and pH change. By employing luciferase reporter assays, we also identified two promoters potentially driving bosR transcription. Our study offers strong support for the long-postulated function of BosR as an autoregulator in B. burgdorferi.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Homeostase/genética , Animais , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Doença de Lyme/microbiologia , Camundongos , Regiões Promotoras Genéticas/genética , Carrapatos/genética
5.
J Biol Chem ; 288(16): 11106-21, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23447540

RESUMO

Treponema pallidum, an obligate parasite of humans and the causative agent of syphilis, has evolved the capacity to exploit host-derived metabolites for its survival. Flavin-containing compounds are essential cofactors that are required for metabolic processes in all living organisms, and riboflavin is a direct precursor of the cofactors FMN and FAD. Unlike many pathogenic bacteria, Treponema pallidum cannot synthesize riboflavin; we recently described a flavin-uptake mechanism composed of an ABC-type transporter. However, there is a paucity of information about flavin utilization in bacterial periplasms. Using a discovery-driven approach, we have identified the TP0796 lipoprotein as a previously uncharacterized Mg(2+)-dependent FAD pyrophosphatase within the ApbE superfamily. TP0796 probably plays a central role in flavin turnover by hydrolyzing exogenously acquired FAD, yielding AMP and FMN. Biochemical and structural investigations revealed that the enzyme has a unique bimetal Mg(2+) catalytic center. Furthermore, the pyrophosphatase activity is product-inhibited by AMP, indicating a possible role for this molecule in modulating FMN and FAD levels in the treponemal periplasm. The ApbE superfamily was previously thought to be involved in thiamine biosynthesis, but our characterization of TP0796 prompts a renaming of this superfamily as a periplasmic flavin-trafficking protein (Ftp). TP0796 is the first structurally and biochemically characterized FAD pyrophosphate enzyme in bacteria. This new paradigm for a bacterial flavin utilization pathway may prove to be useful for future inhibitor design.


Assuntos
Proteínas de Bactérias/química , Flavina-Adenina Dinucleotídeo/química , Lipoproteínas/química , Magnésio/química , Pirofosfatases/química , Treponema pallidum/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Homeostase/fisiologia , Lipoproteínas/genética , Lipoproteínas/metabolismo , Magnésio/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Treponema pallidum/genética
6.
Infect Immun ; 82(4): 1511-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452681

RESUMO

Borrelia burgdorferi encodes a homologue of the bacterial carbon storage regulator A (CsrA). Recently, it was reported that CsrA contributes to B. burgdorferi infectivity and is required for the activation of the central RpoN-RpoS regulatory pathway. However, many questions concerning the function of CsrA in B. burgdorferi gene regulation remain unanswered. In particular, there are conflicting reports concerning the molecular details of how CsrA may modulate rpoS expression and, thus, how CsrA may influence the RpoN-RpoS pathway in B. burgdorferi. To address these key discrepancies, we examined the role of CsrA in differential gene expression in the Lyme disease spirochete. Upon engineering an inducible csrA expression system in B. burgdorferi, controlled hyperexpression of CsrA in a merodiploid strain did not significantly alter the protein and transcript levels of bosR, rpoS, and RpoS-dependent genes (such as ospC and dbpA). In addition, we constructed isogenic csrA mutants in two widely used infectious B. burgdorferi strains. When expression of bosR, rpoS, ospC, and dbpA was compared between the csrA mutants and their wild-type counterparts, no detectable differences were observed. Finally, animal studies indicated that the csrA mutants remained infectious for and virulent in mice. Analyses of B. burgdorferi gene expression in mouse tissues showed comparable levels of rpoS transcripts by the csrA mutants and the parental strains. Taken together, these results constitute compelling evidence that CsrA is not involved in activation of the RpoN-RpoS pathway and is dispensable for mammalian infectious processes carried out by B. burgdorferi.


Assuntos
Proteínas de Bactérias/fisiologia , Borrelia burgdorferi/fisiologia , Doença de Lyme/microbiologia , Proteínas Repressoras/fisiologia , Fator sigma , Animais , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Immunoblotting , Camundongos , RNA Polimerase Sigma 54 , Reação em Cadeia da Polimerase em Tempo Real , Fator sigma/genética , Fator sigma/metabolismo , Fator sigma/fisiologia , Virulência
7.
Infect Immun ; 82(7): 2935-48, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24778115

RESUMO

The Francisella FTT0831c/FTL_0325 gene encodes amino acid motifs to suggest it is a lipoprotein and that it may interact with the bacterial cell wall as a member of the OmpA-like protein family. Previous studies have suggested that FTT0831c is surface exposed and required for virulence of Francisella tularensis by subverting the host innate immune response (M. Mahawar et al., J. Biol. Chem. 287:25216-25229, 2012). We also found that FTT0831c is required for murine pathogenesis and intramacrophage growth of Schu S4, but we propose a different model to account for the proinflammatory nature of the resultant mutants. First, inactivation of FTL_0325 from live vaccine strain (LVS) or FTT0831c from Schu S4 resulted in temperature-dependent defects in cell viability and morphology. Loss of FTT0831c was also associated with an unusual defect in lipopolysaccharide O-antigen synthesis, but loss of FTL_0325 was not. Full restoration of these properties was observed in complemented strains expressing FTT0831c in trans, but not in strains lacking the OmpA motif, suggesting that cell wall contact is required. Finally, growth of the LVS FTL_0325 mutant in Mueller-Hinton broth at 37°C resulted in the appearance of membrane blebs at the poles and midpoint, prior to the formation of enlarged round cells that showed evidence of compromised cellular membranes. Taken together, these data are more consistent with the known structural role of OmpA-like proteins in linking the OM to the cell wall and, as such, maintenance of structural integrity preventing altered surface exposure or release of Toll-like receptor 2 agonists during rapid growth of Francisella in vitro and in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/citologia , Francisella tularensis/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Animais , Proteínas de Bactérias/genética , Forma Celular , Feminino , Francisella tularensis/genética , Deleção de Genes , Teste de Complementação Genética , Imunidade Inata , Camundongos , Camundongos Endogâmicos C3H , Tularemia/microbiologia
8.
Microbiology (Reading) ; 160(Pt 5): 851-862, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24608174

RESUMO

The alternative sigma factor RpoS in Borrelia burgdorferi plays a central role in modulating host adaptive responses when spirochaetes cycle between ticks and mammals. The transcriptional activation of σ(54)-dependent rpoS requires a Fur homologue designated BosR. Previously, BosR was shown to directly activate rpoS transcription by binding to the rpoS promoter. However, many other DNA binding features of BosR have remained obscure. In particular, the precise DNA sequence targeted by BosR has not yet been completely elucidated. The prediction of a putative Per box within the rpoS promoter region has further confounded the identification of the BosR binding sequence. Herein, by using electrophoretic mobility shift assays, we demonstrate that the putative Per box predicted in the rpoS promoter region is not involved in the binding of BosR. Rather, a 13 bp palindromic sequence (ATTTAANTTAAAT) with dyad symmetry, which we denote as the 'BosR box', functions as the core sequence recognized by BosR in the rpoS promoter region of Borrelia burgdorferi. Similar to a Fur box and a Per box, the BosR box probably comprises a 6-1-6 inverted repeat composed of two hexamers (ATTTAA) in a head-to-tail orientation. Selected mutations in the BosR box prevented recombinant BosR from binding to rpoS. In addition, we found that sequences neighbouring the BosR box also are required for the formation of BosR-DNA complexes. Identification of the BosR box advances our understanding of how BosR recognizes its DNA target(s), and provides new insight into the mechanistic details behind the unique regulatory function of BosR.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítios de Ligação , Análise Mutacional de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ligação Proteica
9.
Infect Immun ; 81(11): 4026-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959721

RESUMO

IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under the control of the Francisella rpsL promoter, thereby establishing that the loss of iglE, and not polar effects on downstream vgrG gene expression, was responsible for the defect. IglE is exported to the Francisella outer membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [(3)H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using the iglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication of Francisella tularensis in J774A.1 macrophages. Thus, IglE is essential for Francisella tularensis virulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present.


Assuntos
Francisella tularensis/patogenicidade , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Viabilidade Microbiana , Tularemia/patologia , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Francisella tularensis/química , Francisella tularensis/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Ilhas Genômicas , Lipoproteínas/química , Lipoproteínas/genética , Macrófagos/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Peso Molecular , Tularemia/microbiologia , Virulência , Fatores de Virulência/química , Fatores de Virulência/genética
10.
PLoS Pathog ; 7(2): e1001272, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347346

RESUMO

In Borrelia burgdorferi (Bb), the Lyme disease spirochete, the alternative σ factor σ54 (RpoN) directly activates transcription of another alternative σ factor, σ(S) (RpoS) which, in turn, controls the expression of virulence-associated membrane lipoproteins. As is customary in σ54-dependent gene control, a putative NtrC-like enhancer-binding protein, Rrp2, is required to activate the RpoN-RpoS pathway. However, recently it was found that rpoS transcription in Bb also requires another regulator, BosR, which was previously designated as a Fur or PerR homolog. Given this unexpected requirement for a second activator to promote σ54-dependent gene transcription, and the fact that regulatory mechanisms among similar species of pathogenic bacteria can be strain-specific, we sought to confirm the regulatory role of BosR in a second virulent strain (strain 297) of Bb. Indeed, BosR displayed the same influence over lipoprotein expression and mammalian infectivity for strain Bb 297 that were previously noted for Bb strain B31. We subsequently found that recombinant BosR (rBosR) bound to the rpoS gene at three distinct sites, and that binding occurred despite the absence of consensus Fur or Per boxes. This led to the identification of a novel direct repeat sequence (TAAATTAAAT) critical for rBosR binding in vitro. Mutations in the repeat sequence markedly inhibited or abolished rBosR binding. Taken together, our studies provide new mechanistic insights into how BosR likely acts directly on rpoS as a positive transcriptional activator. Additional novelty is engendered by the facts that, although BosR is a Fur or PerR homolog and it contains zinc (like Fur and PerR), it has other unique features that clearly set it apart from these other regulators. Our findings also have broader implications regarding a previously unappreciated layer of control that can be involved in σ54-dependent gene regulation in bacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Polimerase Sigma 54/fisiologia , Proteínas Repressoras/fisiologia , Fator sigma/fisiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Genes Reguladores , Doença de Lyme/genética , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Camundongos , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Ligação Proteica , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Fator sigma/genética , Fator sigma/metabolismo , Transdução de Sinais/genética , Virulência/genética
11.
PLoS Pathog ; 7(6): e1002133, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738477

RESUMO

Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.


Assuntos
Grupo Borrelia Burgdorferi , GMP Cíclico/análogos & derivados , Ixodes/metabolismo , Doença de Lyme/transmissão , Animais , Grupo Borrelia Burgdorferi/genética , GMP Cíclico/metabolismo , Vetores de Doenças , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Glicerol/metabolismo , Ixodes/microbiologia , Doença de Lyme/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Análise em Microsséries , Fósforo-Oxigênio Liases/genética , Reação em Cadeia da Polimerase , Deleção de Sequência
12.
Artigo em Inglês | MEDLINE | ID: mdl-23545658

RESUMO

Syphilis, caused by the bacterial spirochete Treponema pallidum, remains a prominent sexually transmitted infection worldwide. Despite sequencing of the genome of this obligate human pathogen 15 years ago, the functions of a large number of the gene products of T. pallidum are still unknown, particularly with respect to those of the organism's periplasmic lipoproteins. To better understand their functions, a structural biology approach has been pursued. To this end, the soluble portion of the T. pallidum TP0435 lipoprotein (also known as Tp17) was cloned, hyper-expressed in Escherichia coli and purified to apparent homogeneity. The protein crystals obtained from this preparation diffracted to 2.4 Å resolution and had the symmetry of space group R3. In the hexagonal setting, the unit-cell parameters were a = b = 85.7, c = 85.4 Å.


Assuntos
Proteínas de Bactérias/química , Lipoproteínas/química , Treponema pallidum/química , Proteínas de Bactérias/isolamento & purificação , Cristalização , Cristalografia por Raios X , Lipoproteínas/isolamento & purificação
13.
PLoS One ; 18(5): e0283952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200262

RESUMO

The mechanisms of energy generation and carbon-source utilization in the syphilis spirochete Treponema pallidum have remained enigmatic despite complete genomic sequence information. Whereas the bacterium harbors enzymes for glycolysis, the apparatus for more efficient use of glucose catabolites, namely the citric-acid cycle, is apparently not present. Yet, the organism's energy needs likely exceed the modest output from glycolysis alone. Recently, building on our structure-function studies of T. pallidum lipoproteins, we proposed a "flavin-centric" metabolic lifestyle for the organism that partially resolves this conundrum. As a part of the hypothesis, we have proposed that T. pallidum contains an acetogenic energy-conservation pathway that catabolizes D-lactate, yielding acetate, reducing equivalents for the generation and maintenance of chemiosmotic potential, and ATP. We already have confirmed the D-lactate dehydrogenase activity in T. pallidum necessary for this pathway to operate. In the current study, we focused on another enzyme ostensibly involved in treponemal acetogenesis, phosphotransacetylase (Pta). This enzyme is putatively identified as TP0094 and, in this study, we determined a high-resolution (1.95 Å) X-ray crystal structure of the protein, finding that its fold comports with other known Pta enzymes. Further studies on its solution behavior and enzyme activity confirmed that it has the properties of a Pta. These results are consistent with the proposed acetogenesis pathway in T. pallidum, and we propose that the protein be referred to henceforth as TpPta.


Assuntos
Sífilis , Treponema pallidum , Humanos , Treponema pallidum/genética , Fosfato Acetiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Sífilis/microbiologia , Treponema/genética
14.
J Bacteriol ; 194(24): 6771-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042995

RESUMO

Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn(2+), which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni(2+), Co(2+), Cu(2+), and Zn(2+)) readily induce the dimerization of Tp34; Cu(2+) (50% effective concentration [EC(50)] = 1.7 µM) and Zn(2+) (EC(50) = 6.2 µM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34's likely role in metal ion homeostasis in T. pallidum.


Assuntos
Lipoproteínas/química , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Metais/metabolismo , Treponema pallidum/metabolismo , Sítios de Ligação/genética , Transporte Biológico , Cobalto/química , Cobalto/metabolismo , Biologia Computacional , Cobre/química , Cobre/metabolismo , Cristalografia por Raios X , Dimerização , Genes Bacterianos , Lipoproteínas/genética , Metais/química , Família Multigênica , Mutação , Níquel/química , Níquel/metabolismo , Ligação Proteica , Multimerização Proteica , Treponema pallidum/genética , Zinco/química , Zinco/metabolismo
15.
BMC Microbiol ; 12: 44, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22443136

RESUMO

BACKGROUND: The maintenance of Borrelia burgdorferi in its complex tick-mammalian enzootic life cycle is dependent on the organism's adaptation to its diverse niches. To this end, the RpoN-RpoS regulatory pathway in B. burgdorferi plays a central role in microbial survival and Lyme disease pathogenesis by up- or down-regulating the expression of a number of virulence-associated outer membrane lipoproteins in response to key environmental stimuli. Whereas a number of studies have reported on the expression of RpoS and its target genes, a more comprehensive understanding of when activation of the RpoN-RpoS pathway occurs, and when induction of the pathway is most relevant to specific stage(s) in the life cycle of B. burgdorferi, has been lacking. RESULTS: Herein, we examined the expression of rpoS and key lipoprotein genes regulated by RpoS, including ospC, ospA, and dbpA, throughout the entire tick-mammal infectious cycle of B. burgdorferi. Our data revealed that transcription of rpoS, ospC, and dbpA is highly induced in nymphal ticks when taking a blood meal. The RpoN-RpoS pathway remains active during the mammalian infection phase, as indicated by the sustained transcription of rpoS and dbpA in B. burgdorferi within mouse tissues following borrelial dissemination. However, dbpA transcription levels in fed larvae and intermolt larvae suggested that an additional layer of control likely is involved in the expression of the dbpBA operon. Our results also provide further evidence for the downregulation of ospA expression during mammalian infection, and the repression of ospC at later phases of mammalian infection by B. burgdorferi. CONCLUSION: Our study demonstrates that the RpoN-RpoS regulatory pathway is initially activated during the tick transmission of B. burgdorferi to its mammalian host, and is sustained during mammalian infection.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi/fisiologia , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , RNA Polimerase Sigma 54 , Fator sigma , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Lipoproteínas/genética , Camundongos , Ninfa/microbiologia , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Carrapatos/microbiologia
16.
J Immunol ; 184(12): 6822-32, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483726

RESUMO

Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-gamma and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant alphabeta TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d. Furthermore, these cells are positively selected following TCR interactions with glycolipid/CD1d complexes expressed on CD4+CD8+ thymocytes. Whereas conventional T cell development can proceed with as few as 4/10 CD3 immunoreceptor tyrosine-based activation motifs (ITAMs), little is known about the ITAM requirements for iNKT cell selection and expansion. We analyzed iNKT cell development in CD3 zeta transgenic lines with various tyrosine-to-phenylalanine substitutions (YF) that eliminated the functions of the first (YF1,2), third (YF5,6), or all three (YF1-6) CD3 zeta ITAMs. iNKT cell numbers were significantly reduced in the thymus, spleen, and liver of all YF mice compared with wild type mice. The reduced numbers of iNKT cells resulted from significant reductions in the expression of the early growth response 2 and promyelocytic leukemia zinc finger transcription factors. In the mice with few to no iNKT cells, there was no difference in the severity of Lyme arthritis compared with wild type controls, following infections with the spirochete B. burgdorferi. These findings indicate that a full complement of functional CD3 zeta ITAMs is required for effective iNKT cell development.


Assuntos
Complexo CD3/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Motivos de Aminoácidos , Animais , Diferenciação Celular/imunologia , Separação Celular , Citometria de Fluxo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Doença de Lyme/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/citologia , Receptores de Antígenos de Linfócitos T/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Proc Natl Acad Sci U S A ; 106(9): 3449-54, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19218460

RESUMO

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is transmitted to mammalian hosts through an arthropod (tick) vector. To establish infection, Bb must acquire essential nutrients, including transition metals, from its mammalian and tick hosts. Thus far, no metal transporter has been identified in Bb. Here, we report the identification of the first metal transporter, BmtA (BB0219), in Bb. BmtA-deficient mutants of virulent Bb were readily generated, and the mutants grew slightly slower than wild-type Bb in vitro. However, BmtA mutants were sensitive to the chelating actions of EDTA, suggesting a role for BmtA in metal utilization. Intracellular accumulation of manganese (Mn) was substantially diminished in the bmtA mutant, indicating that BmtA was operative in Mn uptake. Given that BmtA lacks homology to any known Mn transporter, we postulate that BmtA is part of a novel mechanism for Mn acquisition by a bacterial pathogen. BmtA also was essential to the infectious life cycle of Bb in ticks and mammals, thereby qualifying BmtA as a new borrelial virulence factor. In addition, the bmtA mutant was sensitive to treatment with t-butyl hydroperoxide, implying that BmtA, and thus Mn, is important to Bb for detoxifying reactive oxygen species, including those potentially liberated by immune effector cells during the innate immune response. Our discovery of the first molecule involved in metal transport in Bb provides a foundation for further elucidating metal homeostasis in this important human pathogen, which may lead to new strategies for thwarting Lyme disease.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Proteínas de Transporte de Cátions/metabolismo , Doença de Lyme/metabolismo , Manganês/metabolismo , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Proteínas de Transporte de Cátions/genética , Simulação por Computador , Camundongos , Família Multigênica/genética , Mutação/genética , Espécies Reativas de Oxigênio/metabolismo
18.
Protein Sci ; 31(2): 545-551, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34796555

RESUMO

Antibiotic resistance is a challenge for the control of bacterial infections. In an effort to explore unconventional avenues for antibacterial drug development, we focused on the FMN-transferase activity of the enzyme Ftp from the syphilis spirochete, Treponema pallidum (Ftp_Tp). This enzyme, which is only found in prokaryotes and trypanosomatids, post-translationally modifies proteins in the periplasm, covalently linking FMN (from FAD) to proteins that typically are important for establishing an essential electrochemical gradient across the cytoplasmic membrane. As such, Ftp inhibitors potentially represent a new class of antimicrobials. Previously, we showed that AMP is both a product of the Ftp_tp-catalyzed reaction and an inhibitor of the enzyme. As a preliminary step in exploiting this property to develop a novel Ftp_Tp inhibitor, we have used structural and solution studies to examine the inhibitory and enzyme-binding properties of several adenine-based nucleosides, with particular focus on the 2-position of the purine ring. Implications for future drug design are discussed.


Assuntos
Farmacorresistência Bacteriana , Mononucleotídeo de Flavina , Transferases , Treponema pallidum , Antibacterianos/farmacologia , Flavina-Adenina Dinucleotídeo/química , Treponema pallidum/efeitos dos fármacos , Treponema pallidum/enzimologia
19.
Nat Med ; 9(5): 525-32, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692544

RESUMO

The expression and activation of Toll-like receptors (TLRs) was investigated in leprosy, a spectral disease in which clinical manifestations correlate with the type of immune response mounted toward Mycobacterium leprae. TLR2-TLR1 heterodimers mediated cell activation by killed M. leprae, indicating the presence of triacylated lipoproteins. A genome-wide scan of M. leprae detected 31 putative lipoproteins. Synthetic lipopeptides representing the 19-kD and 33-kD lipoproteins activated both monocytes and dendritic cells. Activation was enhanced by type-1 cytokines and inhibited by type-2 cytokines. In addition, interferon (IFN)-gamma and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced TLR1 expression in monocytes and dendritic cells, respectively, whereas IL-4 downregulated TLR2 expression. TLR2 and TLR1 were more strongly expressed in lesions from the localized tuberculoid form (T-lep) as compared with the disseminated lepromatous form (L-lep) of the disease. These data provide evidence that regulated expression and activation of TLRs at the site of disease contribute to the host defense against microbial pathogens.


Assuntos
Hanseníase/imunologia , Glicoproteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Citocinas/fisiologia , Humanos , Imunidade Inata , Lipoproteínas/análise , Glicoproteínas de Membrana/análise , Camundongos , Receptores de Superfície Celular/análise , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptores Toll-Like
20.
Nature ; 436(7050): 573-7, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16049492

RESUMO

The Lyme disease agent, Borrelia burgdorferi, is maintained in a tick-mouse cycle. Here we show that B. burgdorferi usurps a tick salivary protein, Salp15 (ref. 3), to facilitate the infection of mice. The level of salp15 expression was selectively enhanced by the presence of B. burgdorferi in Ixodes scapularis, first indicating that spirochaetes might use Salp15 during transmission. Salp15 was then shown to adhere to the spirochaete, both in vitro and in vivo, and specifically interacted with B. burgdorferi outer surface protein C. The binding of Salp15 protected B. burgdorferi from antibody-mediated killing in vitro and provided spirochaetes with a marked advantage when they were inoculated into naive mice or animals previously infected with B. burgdorferi. Moreover, RNA interference-mediated repression of salp15 in I. scapularis drastically reduced the capacity of tick-borne spirochaetes to infect mice. These results show the capacity of a pathogen to use a secreted arthropod protein to help it colonize the mammalian host.


Assuntos
Borrelia burgdorferi/fisiologia , Borrelia burgdorferi/patogenicidade , Ixodes/metabolismo , Ixodes/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Proteínas e Peptídeos Salivares/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Ixodes/genética , Camundongos , Camundongos Endogâmicos C3H , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Proteínas e Peptídeos Salivares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA