Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Brain Behav ; 20(1): e12723, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347690

RESUMO

The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms. Here, by using genetically engineered mice and innovative touchscreen-based cognitive testing, we sought to investigate whether loss-of-function mutations in genes encoding key interactors of the PSD-95 protein complex display shared phenotypes in associative learning, updating of learned associations and reaction times. Our genetic dissection of mice with loss-of-function mutations in Syngap1, Nlgn3, Dlgap1, Dlgap2 and Shank2 showed that distinct components of the PSD-95 protein complex differentially regulate learning, cognitive flexibility and reaction times in cognitive processing. These data provide insights for understanding how human mutations in these genes lead to the manifestation of diverse and complex phenotypes in NDDs.


Assuntos
Aprendizagem , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Animais , Moléculas de Adesão Celular Neuronais/genética , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação , Proteínas Associadas SAP90-PSD95/genética , Proteínas Ativadoras de ras GTPase/genética
2.
Mol Autism ; 10: 42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827744

RESUMO

Cognitive dysfunction including disrupted behavioral flexibility is central to neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). A cognitive measure that assesses relational memory, and the ability to flexibly assimilate and transfer learned information is transitive inference. Transitive inference is highly conserved across vertebrates and disrupted in cognitive disorders. Here, we examined how mutations in the synaptic cell-adhesion molecule neuroligin-3 (Nlgn3) that have been documented in ASD impact relational memory and behavioral flexibility. We first refined a rodent touchscreen assay to measure visual transitive inference, then assessed two mouse models of Nlgn3 dysfunction (Nlgn3-/y and Nlgn3R451C). Deep analysis of touchscreen behavioral data at a trial level established we could measure trajectories in flexible responding and changes in processing speed as cognitive load increased. We show that gene mutations in Nlgn3 do not disrupt relational memory, but significantly impact flexible responding. Our study presents the first analysis of reaction times in a rodent transitive inference test, highlighting response latencies from the touchscreen system are useful indicators of processing demands or decision-making processes. These findings expand our understanding of how dysfunction of key components of synaptic signaling complexes impact distinct cognitive processes disrupted in neurodevelopmental disorders, and advance our approaches for dissecting rodent behavioral assays to provide greater insights into clinically relevant cognitive symptoms.


Assuntos
Comportamento Animal , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Memória/fisiologia , Mutação/genética , Proteínas do Tecido Nervoso/genética , Percepção Visual/fisiologia , Animais , Condicionamento Operante , Habituação Psicofisiológica , Masculino , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA