Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2300673120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311002

RESUMO

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in Timema stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.


Assuntos
Aclimatação , Inversão Cromossômica , Animais , Inversão Cromossômica/genética , Fluxo Gênico , Genômica , Heterozigoto , Neópteros
2.
J Evol Biol ; 37(6): 642-652, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513126

RESUMO

Phenotypic variation within species can affect the ecological dynamics of populations and communities. Characterizing the genetic variation underlying such effects can help parse the roles of genetic evolution and plasticity in "eco-evolutionary dynamics" and inform how genetic variation may shape patterns of evolution. Here, we employ genome-wide association (GWA) methods in Timema cristinae stick insects and their co-occurring arthropod communities to identify genetic variation associated with community-level traits. Previous studies have shown that maladaptation (i.e., imperfect crypsis) of T. cristinae can reduce the abundance and species richness of other arthropods due to an increase in bird predation. Whether genetic variation that is independent of crypsis has similar effects is unknown and was tested here using genome-wide genotyping-by-sequencing data of stick insects, arthropod community information, and GWA mapping with Bayesian sparse linear mixed models. We find associations between genetic variation in stick insects and arthropod community traits. However, these associations disappear when host-plant traits are accounted for. We thus use path analysis to disentangle interrelationships among stick-insect genetic variation, host-plant traits, and community traits. This revealed that host-plant size has large effects on arthropod communities, while genetic variation in stick insects has a smaller, but still significant effect. Our findings demonstrate that (1) genetic variation in a species can be associated with community-level traits but that (2) interrelationships among multiple factors may need to be analyzed to disentangle whether such associations represent causal relationships. This work helps to build a framework for genomic studies of eco-evolutionary dynamics.


Assuntos
Variação Genética , Animais , Insetos/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes
3.
Mol Ecol ; 32(24): 6809-6823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864542

RESUMO

Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.


Assuntos
Metilação de DNA , Ecótipo , Animais , Metilação de DNA/genética , Genoma , Epigênese Genética , Insetos/genética
4.
Mol Ecol ; 31(2): 467-481, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704650

RESUMO

Understanding selection's impact on the genome is a major theme in biology. Functionally neutral genetic regions can be affected indirectly by natural selection, via their statistical association with genes under direct selection. The genomic extent of such indirect selection, particularly across loci not physically linked to those under direct selection, remains poorly understood, as does the time scale at which indirect selection occurs. Here, we use field experiments and genomic data in stick insects, deer mice and stickleback fish to show that widespread statistical associations with genes known to affect fitness cause many genetic loci across the genome to be impacted indirectly by selection. This includes regions physically distant from those directly under selection. Then, focusing on the stick insect system, we show that statistical associations between SNPs and other unknown, causal variants result in additional indirect selection in general and specifically within genomic regions of physically linked loci. This widespread indirect selection necessarily makes aspects of evolution more predictable. Thus, natural selection combines with chance genetic associations to affect genome-wide evolution across linked and unlinked loci and even in modest-sized populations. This process has implications for the application of evolutionary principles in basic and applied science.


Assuntos
Genoma , Seleção Genética , Animais , Genômica , Insetos/genética , Camundongos , Neópteros , Polimorfismo de Nucleotídeo Único
5.
Mol Ecol ; 31(17): 4444-4450, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35909250

RESUMO

We recently published a paper quantifying the genome-wide consequences of natural selection, including the effects of indirect selection due to the correlation of genetic regions (neutral or selected) with directly selected regions (Gompert et al., 2022). In their critique of our paper, Charlesworth and Jensen (2022) make two main points: (i) indirect selection is equivalent to hitchhiking and thus well documented (i.e., our results are not novel) and (ii) that we do not demonstrate the source of linkage disequilibrium (LD) between SNPs and the Mel-Stripe locus in the Timema cristinae experiment we analyse. As we discuss in detail below, neither of these are substantial criticisms of our work.


Assuntos
Genoma , Seleção Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética
6.
Mol Ecol ; 31(10): 2935-2950, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34455644

RESUMO

Endosymbiont-induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host-related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre- and postmating RI exist among allopatric populations of two interbreeding cherry-infesting tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, wCin3, only co-infects flies from the southwest USA and Mexico. Strain wCin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated with wCin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic-nuclear coupling may impede the transfer of wCin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stable Wolbachia hybrid zones and whether the spread of Wolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.


Assuntos
Tephritidae , Wolbachia , Animais , Citoplasma/genética , DNA Mitocondrial/genética , Drosophila/genética , Masculino , Isolamento Reprodutivo , Tephritidae/genética , Wolbachia/genética
7.
J Evol Biol ; 35(1): 146-163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670006

RESUMO

Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.


Assuntos
Crataegus , Diapausa , Características de História de Vida , Tephritidae , Animais , Crataegus/genética , Desequilíbrio de Ligação , Tephritidae/genética
8.
Proc Natl Acad Sci U S A ; 116(10): 4416-4425, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787193

RESUMO

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism's adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species.


Assuntos
DNA de Plantas/genética , Transferência Genética Horizontal , Genes de Plantas , Poaceae/genética , Cromossomos de Plantas , Filogenia , Poaceae/classificação
9.
Mol Ecol ; 30(12): 2738-2755, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786937

RESUMO

The coexistence of discrete morphs that differ in multiple traits is common within natural populations of many taxa. Such morphs are often associated with chromosomal inversions, presumably because the recombination suppressing effects of inversions help maintain alternate adaptive combinations of alleles across the multiple loci affecting these traits. However, inversions can also harbour selected mutations at their breakpoints, leading to their rise in frequency in addition to (or independent from) their role in recombination suppression. In this review, we first describe the different ways that breakpoints can create mutations. We then critically examine the evidence for the breakpoint-mutation and recombination suppression hypotheses for explaining the existence of discrete morphs associated with chromosomal inversions. We find that the evidence that inversions are favoured due to recombination suppression is often indirect. The evidence that breakpoints harbour mutations that are adaptive is also largely indirect, with the characterization of inversion breakpoints at the sequence level being incomplete in most systems. Direct tests of the role of suppressed recombination and breakpoint mutations in inversion evolution are thus needed. Finally, we emphasize how the two hypotheses of recombination suppression and breakpoint mutation can act in conjunction, with implications for understanding the emergence of supergenes and their evolutionary dynamics. We conclude by discussing how breakpoint characterization could improve our understanding of complex, discrete phenotypic forms in nature.


Assuntos
Inversão Cromossômica , Evolução Molecular , Alelos , Inversão Cromossômica/genética , Fenótipo
10.
Mol Ecol ; 30(9): 2116-2130, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682242

RESUMO

Geographical isolation facilitates the emergence of distinct phenotypes within a single species, but reproductive barriers or selection are needed to maintain the polymorphism after secondary contact. Here, we explore the processes that maintain intraspecific variation of C4 photosynthesis, a complex trait that results from the combined action of multiple genes. The grass Alloteropsis semialata includes C4 and non-C4 populations, which have coexisted as a polyploid series for more than 1 million years in the miombo woodlands of Africa. Using population genomics, we show that there is genome-wide divergence for the photosynthetic types, but the current geographical distribution does not reflect a simple habitat displacement scenario as the genetic clusters overlap, being occasionally mixed within a given habitat. Despite evidence of recurrent introgression between non-C4 and C4 groups, in both diploids and polyploids, the distinct genetic lineages retain their identity, potentially because of selection against hybrids. Coupled with strong isolation by distance within each genetic group, this selection created a geographical mosaic of photosynthetic types. Diploid C4 and non-C4 types never grew together, and the C4 type from mixed populations constantly belonged to the hexaploid lineage. By limiting reproductive interactions between photosynthetic types, the ploidy difference probably allows their co-occurrence, reinforcing the functional diversity within this species. Together, these factors enabled the persistence of divergent physiological traits of ecological importance within a single species despite gene flow and habitat overlap.


Assuntos
Fluxo Gênico , Poaceae , África , Ecossistema , Fotossíntese/genética , Poaceae/genética , Poliploidia
11.
Mol Ecol ; 28(6): 1224-1237, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636326

RESUMO

Theory predicts that structural genomic variants such as inversions can promote adaptive diversification and speciation. Despite increasing empirical evidence that adaptive divergence can be triggered by one or a few large inversions, the degree to which widespread genomic regions under divergent selection are associated with structural variants remains unclear. Here we test for an association between structural variants and genomic regions that underlie parallel host-plant-associated ecotype formation in Timema cristinae stick insects. Using mate-pair resequencing of 20 new whole genomes we find that moderately sized structural variants such as inversions, deletions and duplications are widespread across the genome, being retained as standing variation within and among populations. Using 160 previously published, standard-orientation whole genome sequences we find little to no evidence that the DNA sequences within inversions exhibit accentuated differentiation between ecotypes. In contrast, a formerly described large region of reduced recombination that harbours genes controlling colour-pattern exhibits evidence for accentuated differentiation between ecotypes, which is consistent with differences in the frequency of colour-pattern morphs between host-associated ecotypes. Our results suggest that some types of structural variants (e.g., large inversions) are more likely to underlie adaptive divergence than others, and that structural variants are not required for subtle yet genome-wide genetic differentiation with gene flow.


Assuntos
Ecótipo , Genoma/genética , Variação Estrutural do Genoma/genética , Neópteros/genética , Adaptação Biológica/genética , Animais , Deriva Genética , Genética Populacional , Genômica , Metagenômica/métodos , Seleção Genética
12.
Mol Ecol ; 26(1): 365-382, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27696571

RESUMO

The study of ecological speciation is inherently linked to the study of selection. Methods for estimating phenotypic selection within a generation based on associations between trait values and fitness (e.g. survival) of individuals are established. These methods attempt to disentangle selection acting directly on a trait from indirect selection caused by correlations with other traits via multivariate statistical approaches (i.e. inference of selection gradients). The estimation of selection on genotypic or genomic variation could also benefit from disentangling direct and indirect selection on genetic loci. However, achieving this goal is difficult with genomic data because the number of potentially correlated genetic loci (p) is very large relative to the number of individuals sampled (n). In other words, the number of model parameters exceeds the number of observations (p â‰« n). We present simulations examining the utility of whole-genome regression approaches (i.e. Bayesian sparse linear mixed models) for quantifying direct selection in cases where p â‰« n. Such models have been used for genome-wide association mapping and are common in artificial breeding. Our results show they hold promise for studies of natural selection in the wild and thus of ecological speciation. But we also demonstrate important limitations to the approach and discuss study designs required for more robust inferences.


Assuntos
Especiação Genética , Modelos Genéticos , Seleção Genética , Teorema de Bayes , Cruzamento , Genótipo , Fenótipo
13.
Mol Ecol ; 26(22): 6189-6205, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28786544

RESUMO

How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping-by-sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species' history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large-scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.


Assuntos
Evolução Biológica , Variação Genética , Insetos/genética , Seleção Genética , Adaptação Biológica/genética , Animais , California , Mapeamento Cromossômico , Análise por Conglomerados , Cor , Ecossistema , Estudos de Associação Genética , Genética Populacional , Genótipo , Fenótipo , Pigmentação
14.
Mol Ecol ; 26(15): 3926-3942, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28500772

RESUMO

Speciation with gene flow may require adaptive divergence of multiple traits to generate strong ecologically based reproductive isolation. Extensive negative pleiotropy or physical linkage of genes in the wrong phase affecting these diverging traits may therefore hinder speciation, while genetic independence or "modularity" among phenotypic traits may reduce constraints and facilitate divergence. Here, we test whether the genetics underlying two components of diapause life history, initial diapause intensity and diapause termination timing, constrain differentiation between sympatric hawthorn and apple-infesting host races of the fly Rhagoletis pomonella through analysis of 10,256 SNPs measured via genotyping-by-sequencing (GBS). Loci genetically associated with diapause termination timing were mainly observed for SNPs mapping to chromosomes 1-3 in the genome, most notably for SNPs displaying higher levels of linkage disequilibrium (LD), likely due to inversions. In contrast, selection on initial diapause intensity affected loci on all five major chromosomes of the genome, specifically those showing low levels of LD. This lack of overlap in genetically associated loci suggests that the two diapause phenotypes are largely modular. On chromosome 2, however, intermediate level LD loci and a subgroup of high LD loci displayed significant negative relationships between initial diapause intensity and diapause termination time. These gene regions on chromosome 2 therefore affected both traits, while most regions were largely independent. Moreover, loci associated with both measured traits also tended to exhibit highly divergent allele frequencies between the host races. Thus, the presence of nonoverlapping genetic modules likely facilitates simultaneous, adaptive divergence for the measured life-history components.


Assuntos
Diapausa , Fluxo Gênico , Especiação Genética , Desequilíbrio de Ligação , Tephritidae/genética , Animais , Mapeamento Cromossômico , Genoma de Inseto , Genótipo , Polimorfismo de Nucleotídeo Único
16.
BMC Evol Biol ; 16: 136, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27334284

RESUMO

BACKGROUND: Replicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions. RESULTS: We investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral genetic differentiation (a proxy for gene flow). CONCLUSIONS: Our results suggest that higher toxicity exerts stronger selection, and that divergent selection appears to constrain gene flow, supporting a scenario of ecological speciation. Nonetheless, progress toward ecological speciation was variable, partially reflecting variation in the strength of divergent selection, highlighting the complexity of selective regimes even in natural systems that are seemingly governed by a single, strong selective agent.


Assuntos
Ciprinodontiformes/fisiologia , Extremófilos/fisiologia , Especiação Genética , Poecilia/fisiologia , Adaptação Biológica , Animais , Evolução Biológica , Ciprinodontiformes/metabolismo , Ecossistema , Extremófilos/metabolismo , Feminino , Fluxo Gênico , Sulfeto de Hidrogênio/metabolismo , Masculino , Análise Multivariada , Fenótipo , Poecilia/metabolismo , Isolamento Reprodutivo , Seleção Genética
17.
Mol Ecol ; 25(24): 6107-6123, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27862505

RESUMO

Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C4 and non-C4 genotypes, with some populations using laterally acquired C4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C4 and non-C4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Mutação , Fotossíntese/genética , Poaceae/genética , África , Fluxo Gênico , Filogeografia , Poaceae/fisiologia
18.
Ecol Lett ; 18(8): 817-825, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077935

RESUMO

Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence.


Assuntos
Fluxo Gênico , Frequência do Gene , Especiação Genética , Tephritidae/genética , Animais , Mapeamento Cromossômico , Crataegus , Genoma de Inseto , Desequilíbrio de Ligação , Malus , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Estações do Ano , Análise de Sequência de DNA , Simpatria , Temperatura
19.
Trends Genet ; 28(7): 342-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22520730

RESUMO

The emerging field of speciation genomics is advancing our understanding of the evolution of reproductive isolation from the individual gene to a whole-genome perspective. In this new view it is important to understand the conditions under which 'divergence hitchhiking' associated with the physical linkage of gene regions, versus 'genome hitchhiking' associated with reductions in genome-wide rates of gene flow caused by selection, can enhance speciation-with-gene-flow. We describe here a theory predicting four phases of speciation, defined by changes in the relative effectiveness of divergence and genome hitchhiking, and review empirical data in light of the theory. We outline future directions, emphasizing the need to couple next-generation sequencing with selection, transplant, functional genomics, and mapping studies. This will permit a natural history of speciation genomics that will help to elucidate the factors responsible for population divergence and the roles that genome structure and different forms of hitchhiking play in facilitating the genesis of new biodiversity.


Assuntos
Fluxo Gênico , Especiação Genética , Animais , Biodiversidade , Genoma , Genômica , Humanos , Seleção Genética
20.
Ecol Lett ; 17(3): 369-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24354456

RESUMO

Understanding natural selection's effect on genetic variation is a major goal in biology, but the genome-scale consequences of contemporary selection are not well known. In a release and recapture field experiment we transplanted stick insects to native and novel host plants and directly measured allele frequency changes within a generation at 186,576 genetic loci. We observed substantial, genome-wide allele frequency changes during the experiment, most of which could be attributed to random mortality (genetic drift). However, we also documented that selection affected multiple genetic loci distributed across the genome, particularly in transplants to the novel host. Host-associated selection affecting the genome acted on both a known colour-pattern trait as well as other (unmeasured) phenotypes. We also found evidence that selection associated with elevation affected genome variation, although our experiment was not designed to test this. Our results illustrate how genomic data can identify previously underappreciated ecological sources and phenotypic targets of selection.


Assuntos
Ecossistema , Variação Genética/genética , Genoma/genética , Insetos/genética , Fenótipo , Seleção Genética , Animais , Sequência de Bases , California , Frequência do Gene , Deriva Genética , Desequilíbrio de Ligação , Modelos Biológicos , Dados de Sequência Molecular , Pigmentação/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA