RESUMO
BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/prevenção & controle , Proteínas Nogo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo , Endotélio/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas ERESUMO
BACKGROUND: Asialoglycoprotein receptor 1 (ASGR1), primarily expressed on hepatocytes, promotes the clearance and the degradation of glycoproteins, including lipoproteins, from the circulation. In humans, loss-of-function variants of ASGR1 are associated with a favorable metabolic profile and reduced incidence of cardiovascular diseases. The molecular mechanisms by which ASGR1 could affect the onset of metabolic syndrome and obesity are unclear. Therefore, here we investigated the contribution of ASGR1 in the development of metabolic syndrome and obesity. METHODS: ASGR1 deficient mice (ASGR1-/-) were subjected to a high-fat diet (45% Kcal from fat) for 20 weeks. The systemic metabolic profile, hepatic and visceral adipose tissue were characterized for metabolic and structural alterations, as well as for immune cells infiltration. RESULTS: ASGR1-/- mice present a hypertrophic adipose tissue with 41% increase in fat accumulation in visceral adipose tissue (VAT), alongside with alteration in lipid metabolic pathways. Intriguingly, ASGR1-/- mice exhibit a comparable response to an acute glucose and insulin challenge in circulation, coupled with notably decreased in circulating cholesterol levels. Although the liver of ASGR1-/- have similar lipid accumulation to the WT mice, they present elevated levels of liver inflammation and a decrease in mitochondrial function. CONCLUSION: ASGR1 deficiency impacts energetic homeostasis during obesity leading to improved plasma lipid levels but increased VAT lipid accumulation and liver damage.
Assuntos
Receptor de Asialoglicoproteína , Síndrome Metabólica , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Receptor de Asialoglicoproteína/genética , Dieta Hiperlipídica , Inflamação/metabolismo , Lipídeos , Fígado/metabolismo , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Obesidade/complicaçõesRESUMO
Epidemiological data and interventional studies with hormone replacement therapy suggest that women, at least until menopause, are at decreased cardiovascular risk compared to men. Still the molecular mechanisms beyond this difference are debated and the investigation in experimental models of atherosclerosis has been pivotal to prove that the activation of the estrogen receptor is atheroprotective, despite not enough to explain the differences reported in cardiovascular disease between male and female. This casts also for investigating the importance of the sex chromosome complement (genetic sex) beyond the contribution of sex hormones (gonadal sex) on atherosclerosis. Aim of this review is to present the dualism between gonadal sex and genetic sex with a focus on the data available from experimental models. The molecular mechanisms driving changes in lipid metabolism, immuno-inflammatory reactivity and vascular response in males and females that affect atherosclerosis progression will be discussed.
Assuntos
Aterosclerose , Hormônios Esteroides Gonadais , Humanos , Masculino , Feminino , Hormônios Esteroides Gonadais/metabolismo , Aterosclerose/genética , Menopausa/fisiologia , Terapia de Reposição Hormonal , Inflamação/metabolismo , Caracteres SexuaisRESUMO
AIMS: Inflammatory pathways and immune system dysregulation participate in the onset and progression of cardiometabolic diseases. The dendritic cell immunoreceptor 2 (DCIR2) is a C-type lectin receptor mainly expressed by conventional type 2 dendritic cells, involved in antigen recognition and in the modulation of T cell response. Here, we investigated the effect of DCIR2 deficiency during the development of obesity. METHODS: DCIR2 KO mice and the WT counterpart were fed with high-fat diet (HFD) for 20 weeks. Weight gain, glucose and insulin tolerance were assessed, parallel to immune cell subset profiling and histological analysis. RESULTS: After HFD feeding, DCIR2 KO mice presented altered conventional dendritic cell distribution within the liver without affecting markers of hepatic inflammation. These observations were liver restricted, since immune profile of metabolic and lymphoid organs-namely adipose tissue, spleen and mesenteric lymph nodes-did not show differences between the two groups. This reflected in a similar metabolic profile of DCIR2 KO compared to WT mice, characterized by comparable body weight gain as well as adipose tissues, spleen, Peyer's patches and mesenteric lymph nodes weight at sacrifice. Also, insulin response was similar in both groups. CONCLUSION: Our data show that DCIR2 has a redundant role in the progression of diet-induced obesity and inflammation.
Assuntos
Insulinas , Obesidade , Animais , Camundongos , Células Dendríticas , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Insulinas/metabolismo , Fígado/patologia , Obesidade/etiologia , Obesidade/patologiaRESUMO
Background and aims: Atherogenesis results from altered lipid metabolism and impaired immune response. Emerging evidence has suggested that dendritic cells (DCs) participate to atherosclerosis-related immune response, but their impact is scarcely characterized. Clec4a4 or DCIR2 (Dendritic cell immunoreceptor 2) is a C-type lectin receptor, mainly expressed by CD8α- DCs, able to modulate T cell immunity. However, whether this DC subset could play a role in the atherogenesis is still poorly understood. Thus, the aim of this study is to investigate whether the absence of Clec4a4 could affect atherosclerosis-related immune response and atherosclerosis itself. Methods: Dcir2 -/- Ldlr -/- and Ldlr -/- mice were fed a standard diet or cholesterol-enriched diet for 12 weeks. Subsequently, the profile of circulating and lymph nodes-resident immune cells was investigated together with the analysis of plasma lipid levels and atherosclerotic plaque extension in the aorta. Results: Here, we show that Clec4a4 expression is downregulated under hypercholesterolemia and its deficiency in Ldlr -/- mice results in the reduction of atherosclerotic plaque formation, together with altered lipid metabolism and impaired myeloid immune cell distribution. Conclusions: Our findings suggest a pro-atherosclerotic role of Clec4a4 in experimental atherosclerosis.
RESUMO
The mannose receptor C-type 1 (Mrc1) is a C-type lectin receptor expressed on the immune cells and sinusoidal endothelial cells (ECs) of several tissues, including the bone marrow (BM). Parallel to systemic metabolic alterations and hematopoietic cell proliferation, high-fat diet (HFD) feeding increases the expression of Mrc1 in sinusoidal ECs, thus calling for the investigation of its role in bone marrow cell reprogramming and the metabolic profile during obesity. Mrc1-/- mice and wild-type (WT) littermates were fed an HFD (45% Kcal/diet) for 20 weeks. Weight gain was monitored during the diet regimen and glucose and insulin tolerance were assessed. Extensive flow cytometry profiling, histological, and proteomic analyses were performed. After HFD feeding, Mrc1-/- mice presented impaired medullary hematopoiesis with reduced myeloid progenitors and mature cells in parallel with an increase in BM adipocytes compared to controls. Accordingly, circulating levels of neutrophils and pro-inflammatory monocytes decreased in Mrc1-/- mice together with reduced infiltration of macrophages in the visceral adipose tissue and the liver compared to controls. Liver histological profiling coupled with untargeted proteomic analysis revealed that Mrc1-/- mice presented decreased liver steatosis and the downregulation of proteins belonging to pathways involved in liver dysfunction. This profile was reflected by improved glucose and insulin response and reduced weight gain during HFD feeding in Mrc1-/- mice compared to controls. Our data show that during HFD feeding, mannose receptor deficiency impacts BM and circulating immune cell subsets, which is associated with reduced systemic inflammation and resistance to obesity development.
RESUMO
AIM: Loss of immunosuppressive response supports inflammation during atherosclerosis. We tested whether adoptive cell therapy (ACT) with Tregulatory cells (Tregs), engineered to selectively migrate in the atherosclerotic plaque, would dampen the immune-inflammatory response in the arterial wall in animal models of familial hypercholesterolaemia (FH). METHODS AND RESULTS: FH patients presented a decreased Treg suppressive function associated to an increased inflammatory burden. A similar phenotype was observed in Ldlr -/- mice accompanied by a selective increased expression of the chemokine CX3CL1 in the aorta but not in other districts (lymph nodes, spleen, and liver). Treg overexpressing CX3CR1 were thus generated (CX3CR1+-Tregs) to drive Tregs selectively to the plaque. CX3CR1+-Tregs were injected (i.v.) in Ldlr -/- fed high-cholesterol diet (western type diet, WTD) for 8 weeks. CX3CR1+-Tregs were detected in the aorta, but not in other tissues, of Ldlr -/- mice 24 h after ACT, corroborating the efficacy of this approach. After 4 additional weeks of WTD, ACT with CX3CR1+-Tregs resulted in reduced plaque progression and lipid deposition, ameliorated plaque stability by increasing collagen and smooth muscle cells content, while decreasing the number of pro-inflammatory macrophages. Shotgun proteomics of the aorta showed a metabolic rewiring in CX3CR1+-Tregs treated Ldlr -/- mice compared to controls that was associated with the improvement of inflammation-resolving pathways and disease progression. CONCLUSION: ACT with vasculotropic Tregs appears as a promising strategy to selectively target immune activation in the atherosclerotic plaque.