Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649412

RESUMO

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Evolução Molecular , Genes p16 , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia
2.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625048

RESUMO

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Assuntos
Neoplasias/patologia , Aneuploidia , Cromossomos/genética , Análise por Conglomerados , Ilhas de CpG , Metilação de DNA , Bases de Dados Factuais , Humanos , MicroRNAs/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , RNA Mensageiro/metabolismo
3.
Cell ; 173(2): 338-354.e15, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625051

RESUMO

Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.


Assuntos
Desdiferenciação Celular/genética , Aprendizado de Máquina , Neoplasias/patologia , Carcinogênese , Metilação de DNA , Bases de Dados Genéticas , Epigênese Genética , Humanos , MicroRNAs/metabolismo , Metástase Neoplásica , Neoplasias/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Microambiente Tumoral
4.
Cell ; 164(3): 550-63, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824661

RESUMO

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Transcriptoma , Adulto , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Análise por Conglomerados , DNA Helicases/genética , Metilação de DNA , Epigênese Genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Telomerase/genética , Telômero , Proteína Nuclear Ligada ao X
5.
Cell ; 155(2): 462-77, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120142

RESUMO

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutação , Proteoma/análise , Transdução de Sinais
6.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628290

RESUMO

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto Jovem
7.
Int J Cancer ; 153(5): 1003-1015, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338006

RESUMO

High-grade gliomas are aggressive, deadly primary brain tumors. Median survival of patients with glioblastoma (GBM, WHO grade 4) is 14 months and <10% of patients survive 2 years. Despite improved surgical strategies and forceful radiotherapy and chemotherapy, the prognosis of GBM patients is poor and did not improve over decades. We performed targeted next-generation sequencing with a custom panel of 664 cancer- and epigenetics-related genes, and searched for somatic and germline variants in 180 gliomas of different WHO grades. Herein, we focus on 135 GBM IDH-wild type samples. In parallel, mRNA sequencing was accomplished to detect transcriptomic abnormalities. We present the genomic alterations in high-grade gliomas and the associated transcriptomic patterns. Computational analyses and biochemical assays showed the influence of TOP2A variants on enzyme activities. In 4/135 IDH-wild type GBMs we found a novel, recurrent mutation in the TOP2A gene encoding topoisomerase 2A (allele frequency [AF] = 0.03, 4/135 samples). Biochemical assays with recombinant, wild type (WT) and variant proteins demonstrated stronger DNA binding and relaxation activity of the variant protein. GBM patients carrying the altered TOP2A had shorter overall survival (median OS 150 vs 500 days, P = .0018). In the GBMs with the TOP2A variant we found transcriptomic alterations consistent with splicing dysregulation. luA novel, recurrent TOP2A mutation, which was found exclusively in four GBMs, results in the TOP2A E948Q variant with altered DNA binding and relaxation activities. The deleterious TOP2A mutation resulting in transcription deregulation in GBMs may contribute to disease pathology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Prognóstico , DNA , Isocitrato Desidrogenase/genética , Mutação
9.
Adv Exp Med Biol ; 1416: 121-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432624

RESUMO

Historically, the classification of tumors of the central nervous system (CNS) relies on the histologic appearance of cells under a microscope; however, the molecular era of medicine has resulted in new diagnostic paradigms anchored in the intrinsic biology of disease. The 2021 World Health Organization (WHO) reformulated the classification of CNS tumors to incorporate molecular parameters, in addition to histology, to define many tumor types. A contemporary classification system with integrated molecular features aims to provide an unbiased tool to define tumor subtype, the risk of tumor progression, and even the response to certain therapeutic agents. Meningiomas are heterogeneous tumors as depicted by the current 15 distinct variants defined by histology in the 2021 WHO classification, which also incorporated the first moelcular critiera for meningioma grading: homozygous loss of CDKN2A/B and TERT promoter mutation as criteria for a WHO grade 3 meningioma. The proper classification and clinical management of meningioma patients requires a multidisciplinary approach, which in addition to the information on microscopic (histology) and macroscopic (Simpson grade and imaging), should also include molecular alterations. In this chapter, we present the most up-to-date knowledge in CNS tumor classification, particularly in meningioma, in the molecular era and how it could affect their future classification and clinical management of patients with these diseases.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Sistema Nervoso Central , Técnicas Histológicas , Neoplasias Meníngeas/genética
10.
Gastroenterology ; 158(1): 238-252, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585122

RESUMO

BACKGROUND & AIMS: We studied interactions among proteins of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which interact with microbes, and transforming growth factor beta (TGFB) signaling pathway, which is often altered in colorectal cancer cells. We investigated mechanisms by which CEACAM proteins inhibit TGFB signaling and alter the intestinal microbiome to promote colorectal carcinogenesis. METHODS: We collected data on DNA sequences, messenger RNA expression levels, and patient survival times from 456 colorectal adenocarcinoma cases, and a separate set of 594 samples of colorectal adenocarcinomas, in The Cancer Genome Atlas. We performed shotgun metagenomic sequencing analyses of feces from wild-type mice and mice with defects in TGFB signaling (Sptbn1+/- and Smad4+/-/Sptbn1+/-) to identify changes in microbiota composition before development of colon tumors. CEACAM protein and its mutants were overexpressed in SW480 and HCT116 colorectal cancer cell lines, which were analyzed by immunoblotting and proliferation and colony formation assays. RESULTS: In colorectal adenocarcinomas, high expression levels of genes encoding CEACAM proteins, especially CEACAM5, were associated with reduced survival times of patients. There was an inverse correlation between expression of CEACAM genes and expression of TGFB pathway genes (TGFBR1, TGFBR2, and SMAD3). In colorectal adenocarcinomas, we also found an inverse correlation between expression of genes in the TGFB signaling pathway and genes that regulate stem cell features of cells. We found mutations encoding L640I and A643T in the B3 domain of human CEACAM5 in colorectal adenocarcinomas; structural studies indicated that these mutations would alter the interaction between CEACAM5 and TGFBR1. Overexpression of these mutants in SW480 and HCT116 colorectal cancer cell lines increased their anchorage-independent growth and inhibited TGFB signaling to a greater extent than overexpression of wild-type CEACAM5, indicating that they are gain-of-function mutations. Compared with feces from wild-type mice, feces from mice with defects in TGFB signaling had increased abundance of bacterial species that have been associated with the development of colon tumors, including Clostridium septicum, and decreased amounts of beneficial bacteria, such as Bacteroides vulgatus and Parabacteroides distasonis. CONCLUSION: We found expression of CEACAMs and genes that regulate stem cell features of cells to be increased in colorectal adenocarcinomas and inversely correlated with expression of TGFB pathway genes. We found colorectal adenocarcinomas to express mutant forms of CEACAM5 that inhibit TGFB signaling and increase proliferation and colony formation. We propose that CEACAM proteins disrupt TGFB signaling, which alters the composition of the intestinal microbiome to promote colorectal carcinogenesis.


Assuntos
Antígeno Carcinoembrionário/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Microbioma Gastrointestinal/fisiologia , Transdução de Sinais/genética , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Antígeno Carcinoembrionário/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/mortalidade , Modelos Animais de Doenças , Fezes/microbiologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Metagenômica , Camundongos , Camundongos Transgênicos , Domínios Proteicos/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Esferoides Celulares , Análise de Sobrevida , Fator de Crescimento Transformador beta/metabolismo
11.
Mod Pathol ; 34(7): 1245-1260, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33692446

RESUMO

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Adulto , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Análise Mutacional de DNA , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
12.
J Transl Med ; 19(1): 182, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926464

RESUMO

BACKGROUND: Clinically relevant glioma subtypes, such as the glioma-CpG island methylator phenotype (G-CIMP), have been defined by epigenetics. In this study, the role of long non-coding RNAs in association with the poor-prognosis G-CMIP-low phenotype and the good-prognosis G-CMIP-high phenotype was investigated. Functional associations of lncRNAs with mRNAs and miRNAs were examined to hypothesize influencing factors of the aggressive phenotype. METHODS: RNA-seq data on 250 samples from TCGA's Pan-Glioma study, quantified for lncRNA and mRNAs (GENCODE v28), were analyzed for differential expression between G-CIMP-low and G-CIMP-high phenotypes. Functional interpretation of the differential lncRNAs was performed by Ingenuity Pathway Analysis. Spearman rank order correlation estimates between lncRNA, miRNA, and mRNA nominated differential lncRNA with a likely miRNA sponge function. RESULTS: We identified 4371 differentially expressed features (mRNA = 3705; lncRNA = 666; FDR ≤ 5%). From these, the protein-coding gene TP53 was identified as an upstream regulator of differential lncRNAs PANDAR and PVT1 (p = 0.0237) and enrichment was detected in the "development of carcinoma" (p = 0.0176). Two lncRNAs (HCG11, PART1) were positively correlated with 342 mRNAs, and their correlation estimates diminish after adjusting for either of the target miRNAs: hsa-miR-490-3p, hsa-miR-129-5p. This suggests a likely sponge function for HCG11 and PART1. CONCLUSIONS: These findings identify differential lncRNAs with oncogenic features that are associated with G-CIMP phenotypes. Further investigation with controlled experiments is needed to confirm the molecular relationships.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/genética , Humanos , MicroRNAs/genética , Fenótipo , RNA Longo não Codificante/genética
13.
Bioinformatics ; 35(11): 1974-1977, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30364927

RESUMO

MOTIVATION: DNA methylation has been used to identify functional changes at transcriptional enhancers and other cis-regulatory modules (CRMs) in tumors and other disease tissues. Our R/Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships) provides a systematic approach that reconstructs altered gene regulatory networks (GRNs) by combining enhancer methylation and gene expression data derived from the same sample set. RESULTS: We present a completely revised version 2 of ELMER that provides numerous new features including an optional web-based interface and a new Supervised Analysis mode to use pre-defined sample groupings. We show that Supervised mode significantly increases statistical power and identifies additional GRNs and associated Master Regulators, such as SOX11 and KLF5 in Basal-like breast cancer. AVAILABILITY AND IMPLEMENTATION: ELMER v.2 is available as an R/Bioconductor package at http://bioconductor.org/packages/ELMER/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Metilação de DNA , Software
14.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009951

RESUMO

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Xenoenxertos/imunologia , Organoides/patologia , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/genética , Xenoenxertos/efeitos dos fármacos , Humanos , Camundongos , Recidiva Local de Neoplasia/genética , Organoides/imunologia , Medicina de Precisão/métodos , Ratos
15.
PLoS Comput Biol ; 15(3): e1006701, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30835723

RESUMO

The advent of Next-Generation Sequencing (NGS) technologies has opened new perspectives in deciphering the genetic mechanisms underlying complex diseases. Nowadays, the amount of genomic data is massive and substantial efforts and new tools are required to unveil the information hidden in the data. The Genomic Data Commons (GDC) Data Portal is a platform that contains different genomic studies including the ones from The Cancer Genome Atlas (TCGA) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiatives, accounting for more than 40 tumor types originating from nearly 30000 patients. Such platforms, although very attractive, must make sure the stored data are easily accessible and adequately harmonized. Moreover, they have the primary focus on the data storage in a unique place, and they do not provide a comprehensive toolkit for analyses and interpretation of the data. To fulfill this urgent need, comprehensive but easily accessible computational methods for integrative analyses of genomic data that do not renounce a robust statistical and theoretical framework are required. In this context, the R/Bioconductor package TCGAbiolinks was developed, offering a variety of bioinformatics functionalities. Here we introduce new features and enhancements of TCGAbiolinks in terms of i) more accurate and flexible pipelines for differential expression analyses, ii) different methods for tumor purity estimation and filtering, iii) integration of normal samples from other platforms iv) support for other genomics datasets, exemplified here by the TARGET data. Evidence has shown that accounting for tumor purity is essential in the study of tumorigenesis, as these factors promote confounding behavior regarding differential expression analysis. With this in mind, we implemented these filtering procedures in TCGAbiolinks. Moreover, a limitation of some of the TCGA datasets is the unavailability or paucity of corresponding normal samples. We thus integrated into TCGAbiolinks the possibility to use normal samples from the Genotype-Tissue Expression (GTEx) project, which is another large-scale repository cataloging gene expression from healthy individuals. The new functionalities are available in the TCGAbiolinks version 2.8 and higher released in Bioconductor version 3.7.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Carcinogênese , Conjuntos de Dados como Assunto , Genoma Humano , Humanos
16.
Nucleic Acids Res ; 46(7): e39, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361062

RESUMO

We propose a generic framework for gene regulatory network (GRN) inference approached as a feature selection problem. GRNs obtained using Machine Learning techniques are often dense, whereas real GRNs are rather sparse. We use a Tikonov regularization inspired optimal L-curve criterion that utilizes the edge weight distribution for a given target gene to determine the optimal set of TFs associated with it. Our proposed framework allows to incorporate a mechanistic active biding network based on cis-regulatory motif analysis. We evaluate our regularization framework in conjunction with two non-linear ML techniques, namely gradient boosting machines (GBM) and random-forests (GENIE), resulting in a regularized feature selection based method specifically called RGBM and RGENIE respectively. RGBM has been used to identify the main transcription factors that are causally involved as master regulators of the gene expression signature activated in the FGFR3-TACC3-positive glioblastoma. Here, we illustrate that RGBM identifies the main regulators of the molecular subtypes of brain tumors. Our analysis reveals the identity and corresponding biological activities of the master regulators characterizing the difference between G-CIMP-high and G-CIMP-low subtypes and between PA-like and LGm6-GBM, thus providing a clue to the yet undetermined nature of the transcriptional events among these subtypes.


Assuntos
Redes Reguladoras de Genes/genética , Glioma/genética , Motivos de Nucleotídeos/genética , Fatores de Transcrição/genética , Algoritmos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/classificação , Glioma/patologia , Humanos , Aprendizado de Máquina , Proteínas Associadas aos Microtúbulos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
17.
Proc Natl Acad Sci U S A ; 114(40): 10743-10748, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916733

RESUMO

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Assuntos
Epigenômica , Amplificação de Genes , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia/genética , Deleção de Sequência , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Perfilação da Expressão Gênica , Glioma/patologia , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Tumorais Cultivadas
18.
Pharmacogenomics J ; 19(1): 72-82, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30131588

RESUMO

Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease that affects approximately 2.5 million people globally. Even though the etiology of MS remains unknown, it is accepted that it involves a combination of genetic alterations and environmental factors. Here, after performing whole exome sequencing, we found a MS patient harboring a rare and homozygous single nucleotide variant (SNV; rs61745847) of the G-protein coupled receptor (GPCR) galanin-receptor 2 (GALR2) that alters an important amino acid in the TM6 molecular toggle switch region (W249L). Nuclear magnetic resonance imaging showed that the hypothalamus (an area rich in GALR2) of this patient exhibited an important volumetric reduction leading to an enlarged third ventricle. Ex vivo experiments with patient-derived blood cells (AKT phosphorylation), as well as studies in recombinant cell lines expressing the human GALR2 (calcium mobilization and NFAT mediated gene transcription), showed that galanin (GAL) was unable to stimulate cell signaling in cells expressing the variant GALR2 allele. Live cell confocal microscopy showed that the GALR2 mutant receptor was primarily localized to intracellular endosomes. We conclude that the W249L SNV is likely to abrogate GAL-mediated signaling through GALR2 due to the spontaneous internalization of this receptor in this patient. Although this homozygous SNV was rare in our MS cohort (1:262 cases), our findings raise the potential importance of impaired neuroregenerative pathways in the pathogenesis of MS, warrant future studies into the relevance of the GAL/GALR2 axis in MS and further suggest the activation of GALR2 as a potential therapeutic route for this disease.


Assuntos
Galanina/genética , Esclerose Múltipla/genética , Receptor Tipo 2 de Galanina/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular , Feminino , Células HEK293 , Humanos , Fosforilação/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Adulto Jovem
19.
Gynecol Oncol ; 153(2): 343-355, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30898391

RESUMO

OBJECTIVE: Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) have focused largely on populations of European ancestry. We aimed to identify common germline variants associated with EOC risk in Asian women. METHODS: Genotyping was performed as part of the OncoArray project. Samples with >60% Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. After imputation, genotypes were available for 11,595,112 SNPs to identify associations. RESULTS: At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC (odds ratio [OR] = 1.34, P = 8.7 × 10-9) and high-grade serous EOC (HGSOC) (OR = 1.34, P = 4.3 × 10-9). SNP rs6902488 at 6p25.2 (r2 = 0.97 with rs7748275) lies in an active enhancer and is predicted to impact binding of STAT3, P300 and ELF1. We identified additional risk loci with low Bayesian false discovery probability (BFDP) scores, indicating they are likely to be true risk associations (BFDP <10%). At chromosome 20q11.22, rs74272064 was associated with HGSOC risk (OR = 1.27, P = 9.0 × 10-8). Overall EOC risk was associated with rs10260419 at chromosome 7p21.3 (OR = 1.33, P = 1.2 × 10-7) and rs74917072 at chromosome 2q37.3 (OR = 1.25, P = 4.7 × 10-7). At 2q37.3, expression quantitative trait locus analysis in 404 HGSOC tissues identified ESPNL as a putative candidate susceptibility gene (P = 1.2 × 10-7). CONCLUSION: While some risk loci were shared between East Asian and European populations, others were population-specific, indicating that the landscape of EOC risk in Asian women has both shared and unique features compared to women of European ancestry.


Assuntos
Carcinoma Epitelial do Ovário/genética , Povo Asiático/genética , Sequência de Bases , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26061751

RESUMO

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Assuntos
DNA de Neoplasias/análise , Genes p53 , Glioma/genética , Mutação , Adolescente , Adulto , Idoso , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Análise por Conglomerados , Feminino , Glioblastoma/genética , Glioma/metabolismo , Glioma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Modelos de Riscos Proporcionais , Análise de Sequência de DNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA