Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; : 101241, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39140257

RESUMO

PURPOSE: Pathogenic LZTR1 variants cause schwannomatosis and dominant/recessive Noonan syndrome (NS). We aim to establish an association between heterozygous loss-of-function (LoF) LZTR1 alleles and isolated multiple café-au-lait macules (CaLMs). METHODS: 849 unrelated participants with multiple CaLMs, lacking pathogenic/likely pathogenic NF1 and SPRED1 variants, underwent RASopathy gene panel sequencing. Data on 125 individuals with heterozygous LZTR1 variants were collected for characterizing their clinical features and the associated molecular spectrum. In vitro functional assessment was performed on a representative panel of missense variants and small in-frame deletions. RESULTS: Analysis revealed heterozygous LZTR1 variants in 6.0% (51/849) of participants, exceeding the general population prevalence. LZTR1-related CaLMs varied in number, displayed sharp or irregular borders, and were generally isolated, but occasionally associated with features recurring in RASopathies. In two families, CaLMs and schwannomas co-occurred. The molecular spectrum mainly consisted of truncating variants, indicating LoF. These variants substantially overlapped with those occurring in schwannomatosis and recessive NS. Functional characterization showed accelerated protein degradation or mislocalization, and failure to downregulate MAPK signaling. CONCLUSION: Our findings expand the phenotypic variability associated with LZTR1 variants, which, in addition to conferring susceptibility to schwannomatosis and causing dominant and recessive NS, occur in individuals with isolated multiple CaLMs.

2.
Clin Genet ; 106(1): 109-113, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38665048

RESUMO

Usmani-Riazuddin syndrome (USRISR, MIM# 619548; USRISD, MIM#619467) is a very rare genetic condition. recently associated with deleterious variants in AP1G1 (MIM* 603533). It is characterized by multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, muscular tone disorders, seizures, limb defects, and unspecified facial gestalt. In this report, we describe this syndrome for the second time, in association to a novel AP1G1 variant identified in a toddler with multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, arrhythmias, hearing loss, skin changes, and limb defects. Next generation sequencing (NGS) analysis through clinical exome disclosed AP1G1: c.1969C>G (p.Leu657Val), de novo, likely pathogenic variant, according to ACMG classification criteria. Proband's facial features resembled the spectrum of chromatinopathies. Clinical pictures were analyzed and a clinical overlap was supported by DeepGestalt analysis (www.face2gene.com). The system identified 6 chromatin disorders out of 30 possible diagnoses. The remaining 24 included 9 miscellaneous cryptic chromosomal abnormalities (excluded due to normal microarray study). To the best of our knowledge, this is the first description of likely distinctive facial features in a patient with Usmani-Riazuddin syndrome. Further multicentric analyses are needed for a better definition of this aspect.


Assuntos
Deficiência Intelectual , Fenótipo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Pré-Escolar , Feminino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia
3.
Am J Med Genet A ; 194(9): e63586, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38709155

RESUMO

Aymé-Gripp syndrome (AYGRPS) is a multisystemic disorder caused by a subset of pathogenic variants in the MAF gene. Major clinical features include bilateral early cataracts, sensorineural hearing loss (SNHL), and a characteristic facial appearance along with variable neurodevelopmental delay. Pericarditis resulting in pericardial effusion of varying degree has been observed in a subset of affected individuals and could represent a severe feature in neonatal or infantile age. Here, we describe a syndromic infant with massive pericardial effusion and craniofacial features that oriented toward the suspicion of AYGRPS, which was subsequently confirmed by the molecular analysis of MAF. Pericardial effusion was first observed prenatally and documented to be recurrent, progressive, and severe in the first months of life, thus requiring pericardiocentesis and surgical procedures. In this report, we provide further delineation of the minor clinical characteristics, particularly focusing on cardiac features of AYGRPS. A dedicated cardiac surveillance of these findings may help reduce the morbidity and mortality of this rare condition.


Assuntos
Derrame Pericárdico , Feminino , Humanos , Recém-Nascido , Catarata/diagnóstico , Catarata/genética , Catarata/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/diagnóstico , Derrame Pericárdico/patologia , Derrame Pericárdico/diagnóstico , Fenótipo , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia
4.
Am J Med Genet A ; 194(7): e63580, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38511524

RESUMO

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20 , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cromossomos Humanos Par 20/genética , Variações do Número de Cópias de DNA/genética , Fenótipo , Adolescente
5.
Dermatology ; 240(3): 397-413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38588653

RESUMO

BACKGROUND: Autosomal recessive congenital ichthyoses (ARCIs) are a clinically heterogeneous group of keratinization disorders characterized by generalized skin scaling due to mutations in at least 12 genes. The aim of our study was to assess disease severity, phenotypic, and ultrastructural features and to evaluate their association with genetic findings in ARCI patients. METHODS: Clinical signs and symptoms, and disease severity were scored in a single-center series of patients with a genetic diagnosis of ARCI. Skin ultrastructural findings were reviewed. RESULTS: Seventy-four consecutive patients (mean age 11.0 years, range 0.1-48.8) affected with lamellar ichthyosis (50/74, 67.5%), congenital ichthyosiform erythroderma (18/74, 24.3%), harlequin ichthyosis (two/74, 2.7%), and other minor ARCI subtypes (four/74, 5.4%) were enrolled. Mutated genes were as follows: TGM1 in 18/74 (24.3%) patients, ALOX12B in 18/74 (24.3%), CYP4F22 in 12/74 (16.2%), ABCA12 in nine/74 (12.2%), ALOXE3 in seven/74 (9.5%), NIPAL4 in seven/74 (9.5%), and CERS3, PNPLA1, and SDR9C7 in 1 patient each (1.4%). Twenty-five previously undescribed mutations in the different ARCI causative genes, as well as two microduplications in TGM1, and two microdeletions in CYP4F22 and NIPAL4 were identified. The mean ichthyosis severity score in TGM1- and ABCA12-mutated patients was significantly higher than in all other mutated genes, while the lowest score was observed in CYP4F22-mutated patients. Alopecia, ectropion, and eclabium were significantly associated with TGM1 and ABCA12 mutations, and large, thick, and brownish scales with TGM1 mutations. Among specific phenotypic features, psoriasis-like lesions as well as a trunk reticulate scale pattern and striated keratoderma were present in NIPAL4-mutated patients. Ultrastructural data available for 56 patients showed a 100% specificity of cholesterol clefts for TGM1-mutated cases and revealed abnormal lamellar bodies in SDR9C7 and CERS3 patients. CONCLUSION: Our study expands the phenotypic and genetic characterization of ARCI by the description of statistically significant associations between disease severity, specific clinical signs, and different mutated genes. Finally, we highlighted the presence of psoriasis-like lesions in NIPAL4-ARCI patients as a novel phenotypic feature with diagnostic and possible therapeutic implications.


Assuntos
Eritrodermia Ictiosiforme Congênita , Ictiose Lamelar , Lipase , Mutação , Fenótipo , Índice de Gravidade de Doença , Transglutaminases , Humanos , Criança , Pré-Escolar , Masculino , Feminino , Adolescente , Adulto , Adulto Jovem , Lactente , Pessoa de Meia-Idade , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/patologia , Itália , Estudos Transversais , Ictiose Lamelar/genética , Ictiose Lamelar/patologia , Transglutaminases/genética , Lipase/genética , Proteínas de Membrana/genética , Transportadores de Cassetes de Ligação de ATP/genética , Genótipo , Araquidonato 12-Lipoxigenase/genética , Pele/patologia , Pele/ultraestrutura , Ictiose/genética , Ictiose/patologia , Fosfolipases , Receptores de Superfície Celular , Aciltransferases , Esfingosina N-Aciltransferase , Sistema Enzimático do Citocromo P-450 , Oxirredutases , Lipoxigenase
6.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063023

RESUMO

Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.


Assuntos
Cardiomiopatias , Dinaminas , Mutação , Humanos , Feminino , Dinaminas/genética , Cardiomiopatias/genética , Mutação/genética , Lactente , Evolução Fatal , Encefalopatias/genética , Encefalopatias/patologia , GTP Fosfo-Hidrolases/genética
7.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000022

RESUMO

CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.


Assuntos
Cromossomos Humanos X , Proteínas Serina-Treonina Quinases , Humanos , Feminino , Cromossomos Humanos X/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/deficiência , Inversão Cromossômica , Síndromes Epilépticas/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Espasmos Infantis
9.
Children (Basel) ; 11(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790536

RESUMO

Background: CACNA1C gene encodes the alpha 1 subunit of the CaV1.2 L-type Ca2+ channel. Pathogenic variants in this gene have been associated with cardiac rhythm disorders such as long QT syndrome, Brugada syndrome and Timothy syndrome. Recent evidence has suggested the possible association between CACNA1C mutations and neurologically-isolated (in absence of cardiac involvement) phenotypes in children, giving birth to a wider spectrum of CACNA1C-related clinical presentations. However, to date, little is known about the variety of both neurological and non-neurological signs/symptoms in the neurologically-predominant phenotypes. Methods and Results: We conducted a systematic review of neurologically-predominant presentations without cardiac conduction defects, associated with CACNA1C mutations. We also reported a novel de novo missense pathogenic variant in the CACNA1C gene of a children patient presenting with constructional, dressing and oro-buccal apraxia associated with behavioral abnormalities, mild intellectual disability, dental anomalies, gingival hyperplasia and mild musculoskeletal defects, without cardiac conduction defects. Conclusions: The present study highlights the importance of considering the investigation of the CACNA1C gene in children's neurological isolated syndromes, and expands the phenotype of the CACNA1C related conditions. In addition, the present study highlights that, even in absence of cardiac conduction defects, nuanced clinical manifestations of the Timothy syndrome (e.g., dental and gingival defects) could be found. These findings suggest the high variable expressivity of the CACNA1C gene and remark that the absence of cardiac involvement should not mislead the diagnosis of a CACNA1C related disorder.

10.
Front Endocrinol (Lausanne) ; 15: 1364234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596219

RESUMO

Silver-Russell syndrome (SRS, OMIM, 180860) is a rare genetic disorder with a wide spectrum of symptoms. The most common features are intrauterine growth retardation (IUGR), poor postnatal development, macrocephaly, triangular face, prominent forehead, body asymmetry, and feeding problems. The diagnosis of SRS is based on a combination of clinical features. Up to 60% of SRS patients have chromosome 7 or 11 abnormalities, and <1% show abnormalities in IGF2 signaling pathway genes (IGF2, HMGA2, PLAG1 and CDKN1C). The underlying genetic cause remains unknown in about 40% of cases (idiopathic SRS). We report a novel IGF2 variant c.[-6-2A>G] (NM_000612) in a child with severe IUGR and clinical features of SRS and confirm the utility of targeted exome sequencing in patients with negative results to common genetic analyses. In addition, we report that long-term growth hormone treatment improves height SDS in this patient.


Assuntos
Hormônio do Crescimento Humano , Síndrome de Silver-Russell , Criança , Feminino , Humanos , Síndrome de Silver-Russell/tratamento farmacológico , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/diagnóstico , Hormônio do Crescimento/genética , Herança Paterna , Fenótipo , Hormônio do Crescimento Humano/uso terapêutico , Hormônio do Crescimento Humano/genética , Retardo do Crescimento Fetal/genética , Fator de Crescimento Insulin-Like II/genética
11.
Genes (Basel) ; 15(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790225

RESUMO

Alport Syndrome (AS) is the most common genetic glomerular disease, and it is caused by COL4A3, COL4A4, and COL4A5 pathogenic variants. The classic phenotypic spectrum associated with AS ranges from isolated hematuria to chronic kidney disease (CKD) with extrarenal abnormalities. Atypical presentation of the disorder is possible, and it can mislead the diagnosis. Polycystic kidney disease (PKD), which is most frequently associated with Autosomal Dominant PKD (ADPKD) due to PKD1 and PKD2 heterozygous variants, is emerging as a possible clinical manifestation in COL4A3-A5 patients. We describe a COL4A5 novel familial frameshift variant (NM_000495.5: c.1095dup p.(Leu366ValfsTer45)), which was associated with AS and PKD in the hemizygous proband, as well as with PKD, IgA glomerulonephritis and focal segmental glomerulosclerosis (FSGS) in the heterozygous mother. Establishing the diagnosis of AS can sometimes be difficult, especially in the context of misleading family history and atypical phenotypic features. This case study supports the emerging genotypic and phenotypic heterogeneity in COL4A3-A5-associated disorders, as well as the recently described association between PKD and collagen type IV (Col4) defects. We highlight the importance of the accurate phenotyping of all family members and the relevance of next-generation sequencing in the differential diagnosis of hereditary kidney disease.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Adulto , Feminino , Humanos , Masculino , Colágeno Tipo IV/genética , Mutação da Fase de Leitura , Nefrite Hereditária/genética , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/patologia , Linhagem , Fenótipo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/diagnóstico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/diagnóstico
12.
Birth Defects Res ; 116(7): e2382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975735

RESUMO

BACKGROUND: A peculiar subgroup of patients with partial or complete atrioventricular canal defect exhibits a spectrum of left-sided obstructions including right ventricular dominance and aortic coarctation. The association of atrioventricular canal defect with left-sided obstructions is found in several genetic syndromes; however, the molecular basis of nonsyndromic atrioventricular canal defect with aortic coarctation is still poorly understood. Although some candidate genes for nonsyndromic atrioventricular canal defect are known, a complex oligogenic inheritance determined in some cases by the co-occurrence of multiple variants has also been hypothesized. CASE REPORT: We describe a nonsyndromic infant with mesocardia with viscero-atrial situs solitus, partial atrioventricular canal defect, mild right ventricular dominance, and coarctation of the aorta. Next generation sequencing genetic testing revealed variants in two genes, GDF1 and NOTCH1, previously reported in association with atrioventricular canal defect and left-sided obstructive lesions, respectively. CONCLUSION: The present report could support the hypothesis that the co-occurrence of cumulative variants may be considered as genetic predisposing risk factor for specific congenital heart defects.


Assuntos
Coartação Aórtica , Fator 1 de Diferenciação de Crescimento , Receptor Notch1 , Humanos , Coartação Aórtica/genética , Receptor Notch1/genética , Fator 1 de Diferenciação de Crescimento/genética , Defeitos dos Septos Cardíacos/genética , Masculino , Feminino , Predisposição Genética para Doença , Recém-Nascido , Mutação/genética , Lactente
13.
Biomedicines ; 12(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38927485

RESUMO

Chronic pancreatitis is often secondary to alcohol abuse, but pancreatitis with no other aetiology is frequently associated with variants in genes encoding proteins related to zymogen granule activation. Our goal was to identify genomic variants in a patient by analyzing an extended panel of genes associated with the intra-pancreatic activation of the trypsin pathway. A 23-year-old woman was addressed at our institution because of chronic pancreatitis of unknown aetiology presenting recurrent episodes since she was the age of four. Next Generation Sequencing was performed to analyze a panel of nine genes associated with pancreatitis (CaSR, CFTR, CPA1, CTRC, CTSB, KRT8, PRSS1, PRSS2, and SPINK1). Three missense variants were found: p.Leu997Phe, maternally inherited, in the CFTR gene; p.Ile73Phe, paternally inherited, in the SPINK1 gene; and p.Phe790Ser, a de novo variant, in the CaSR gene. They were classified, respectively as probably benign, a Variant of Uncertain Significance, and the last one, which has never been described in the literature, as likely being pathogenic following American College of Medical Genetics and Genomics standard guidelines. Extensive intra-pancreatic activation of trypsin pathway gene sequencing detected rare variants that were not found with other gene screening and showed that variants in different genes may interact in contributing to the onset of the pancreatitis phenotype.

14.
Front Pediatr ; 12: 1345265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873586

RESUMO

Background: Primary ciliary dyskinesia (PCD) is considered a rare cause of chronic rhinosinusitis with nasal polyposis (CRSwNP), which is reported in 6% of children with PCD. The forms of PCD associated with the variants of the GAS8 gene identified so far seem to be linked to recurrent respiratory infections (sinusitis, otitis, and bronchiectasis) without situs inversus. Case presentation: We report a case of an 11-year-old girl with recurrent otitis media, productive cough, and chronic rhinosinusitis with nasal polyposis with homozygosity for a novel nonsense mutation in the GAS8. Conclusion: Children with CRSwNP should be treated in a multidisciplinary manner (ENT, pulmonologist, allergist, pathologist, pediatrician, and geneticist) because nasal polyposis often hides etiologies that must be recognized.

15.
Genes (Basel) ; 15(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254992

RESUMO

The translocation of the testis-determining factor, the SRY gene, from the Y to the X chromosome is a rare event that causes abnormalities in gonadal development. In all cases of males and females carrying this translocation, disorder of sex development is reported. In our study, we described a peculiar pedigree with the first evidence of four healthy females from three generations who are carriers of the newly identified t(X;Y)(q28;p11.2)(SRY+) translocation with no evidence of ambiguous genitalia or other SRY-dependent alterations. Our study was a consequence of a Non-Invasive Prenatal Test (NIPT) showing a sexual chromosomal abnormality (XXY) followed by a chorionic villus analysis suggesting a normal karyotype 46,XX and t(X;Y) translocation detected by FISH. Here, we (i) demonstrated the inheritance of the translocation in the maternal lineage via karyotyping and FISH analysis; (ii) characterised the structural rearrangement via chromosomal microarray; and (iii) demonstrated, via Click-iT® EdU Imaging assay, that there was an absolute preferential inactivation of the der(X) chromosome responsible for the lack of SRY expression. Overall, our study provides valuable genetic and molecular information that may lead personal and medical decisions.


Assuntos
Cromossomos Humanos X , Genes sry , Masculino , Gravidez , Humanos , Feminino , Proteína da Região Y Determinante do Sexo/genética , Cromossomos Humanos X/genética , Aberrações Cromossômicas , Cariotipagem , Translocação Genética/genética
16.
Genes (Basel) ; 15(1)2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275611

RESUMO

Cranio-lenticulo-sutural dysplasia (CLSD, OMIM #607812) is a rare genetic condition characterized by late-closing fontanels, skeletal defects, dysmorphisms, and congenital cataracts that are caused by bi-allelic or monoallelic variants in the SEC23A gene. Autosomal recessive inheritance (AR-CLSD) has been extensively documented in several cases with homozygous or compound heterozygous variants in SEC23A, whereas autosomal dominant inheritance (AD-CLSD) involving heterozygous inherited variants has been reported just in three patients. The SEC23A gene encodes for one of the main components of a protein coat complex known as coat-protein-complex II (COPII), responsible for the generation of the envelope of the vesicles exported from the endoplasmic reticulum (ER) toward the Golgi complex (GC). AR-CLSD and AD-CLSD exhibit common features, although each form also presents distinctive and peculiar characteristics. Herein, we describe a rare case of a 10-year-old boy with a history of an anterior fontanel that closed only at the age of 9. The patient presents with short proportionate stature, low weight, and neurological impairment, including intellectual disability, global developmental delay, abnormal coordination, dystonia, and motor tics, along with dysmorphisms such as a wide anterior fontanel, hypertelorism, frontal bossing, broad nose, high-arched palate, and micrognathia. Trio clinical exome was performed, and a de novo heterozygous missense variant in SEC23A (p.Arg716Cys) was identified. This is the first reported case of CLSD caused by a de novo heterozygous missense variant in SEC23A presenting specific neurological manifestations never described before. For the first time, we have conducted a comprehensive phenotype-genotype correlation using data from our patient and the eight most well-documented cases in the literature. Our work has allowed us to identify the main specific and characteristic signs of both forms of CLSD (AR-CLSD, AD CLSD), offering valuable insights that can guide physicians in the diagnostic process. Notably, detailed descriptions of neurological features such as intellectual disability, global developmental delay, and motor impairment have not been documented before. Furthermore, our literature overview is crucial in the current landscape of CLSD due to the absence of guidelines for the clinical diagnosis and proper follow-up of these patients, especially during childhood.


Assuntos
Deficiência Intelectual , Proteínas de Transporte Vesicular , Masculino , Humanos , Criança , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação de Sentido Incorreto , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo
17.
Orphanet J Rare Dis ; 19(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167094

RESUMO

BACKGROUND: Ornithine Transcarbamylase Deficiency (OTCD) is an X-linked urea cycle disorder characterized by acute hyperammonemic episodes. Hemizygous males are usually affected by a severe/fatal neonatal-onset form or, less frequently, by a late-onset form with milder disease course, depending on the residual enzymatic activity. Hyperammonemia can occur any time during life and patients could remain non- or mis-diagnosed due to unspecific symptoms. In heterozygous females, clinical presentation varies based on the extent of X chromosome inactivation. Maternal transmission in X-linked disease is the rule, but in late-onset OTCD, due to the milder phenotype of affected males, paternal transmission to the females is possible. So far, father-to-daughter transmission of OTCD has been reported only in 4 Japanese families. RESULTS: We identified in 2 Caucasian families, paternal transmission of late-onset OTCD with severe/fatal outcome in affected males and 1 heterozygous female. Furthermore, we have reassessed the pedigrees of other published reports in 7 additional families with evidence of father-to-daughter inheritance of OTCD, identifying and listing the family members for which this transmission occurred. CONCLUSIONS: Our study highlights how the diagnosis and pedigree analysis of late-onset OTCD may represent a real challenge for clinicians. Therefore, the occurrence of paternal transmission in OTCD should not be underestimated, due to the relevant implications for disease inheritance and risk of recurrence.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Masculino , Recém-Nascido , Humanos , Feminino , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Núcleo Familiar , Hiperamonemia/genética , Heterozigoto , Pai , Ornitina Carbamoiltransferase/genética
18.
Neurol Genet ; 10(4): e200169, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139262

RESUMO

Objectives: To provide a comprehensive description of neuroradiologic findings in a patient with a probable pathogenic variant of HUWE1, particularly in relation to pontine and cerebellar hypoplasia. Methods: We first report prenatal and postnatal neuroradiologic phenotype of a female patient carrying a HUWE1 likely pathogenic variant and discuss its function. Results: An ultrasound shows borderline ventriculomegaly, rotated cerebellar vermis, and dysgenetic corpus callosum. An MR study identify a short, thin corpus callosum, falcine sinus persistence, reduced cerebellar vermis size, wide inferior IV ventricle, and reduced pontine bulging. Discussion: HUWE1 is a gene encoding an E3 ubitiquine ligase protein involved in nervous system development, function, and disease. The mechanisms by which HUWE1 gene affects nervous system are still largely unclear, but a growing body of literature described disease-causing variants in this gene. This report may help prenatal diagnostic experts in consider also this entity, especially when dealing with pontine and cerebellar hypoplasia findings.

19.
Front Pediatr ; 12: 1319885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283630

RESUMO

Congenital erythrocytosis recognizes heterogeneous genetic basis and despite the use of NGS technologies, more than 50% of cases are still classified as idiopathic. Herein, we describe the case of a 3-year-old boy with a rare metabolic disorder due to SLC30A10 bi-allelic mutations and characterized by hypermanganesemia, congenital erythrocytosis and neurodegeneration, also known as hypermanganesemia with dystonia 1 (HMNDYT1). The patient was treated with iron supplementation and chelation therapy with CaNa2EDTA, resulting in a significative reduction of blood manganese levels and erythrocytosis indexes. Although it couldn't be excluded that the patient's developmental impairment was part of the phenotypic spectrum of the disease, after three months from starting treatment no characteristic extrapyramidal sign was detectable. Our findings suggest the importance of assessing serum manganese levels in patients with unexplained polycythemia and increased liver enzymes. Moreover, we highlight the importance of extended genetic testing as a powerful diagnostic tool to uncover rare genetic forms of congenital erythrocytosis. In the described patient, identifying the molecular cause of erythrocytosis has proven essential for proper clinical management and access to therapeutic options.

20.
Mol Syndromol ; 15(4): 339-346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119450

RESUMO

Introduction: Kallmann syndrome (KS) is a genetically heterogeneous developmental disorder that most often manifests hypogonadotropic hypogonadism (HH) and hypo-/anosmia due to early embryonic impairment in the migration of gonadotropin-releasing hormone neurons. SOX10 (SRY-Box 10; MIM*602229), a key transcriptional activator involved in the development of neural crest cells, has been associated with KS and is identified as one of the causative genes of Waardenburg syndrome (WS). Case Presentation: A 28-year-old female patient, who was clinically diagnosed with KS in her childhood, presented with HH and anosmia, mild bilateral sensorineural hearing loss (SNHL), and pigmentation abnormalities. Next-generation sequencing analysis detected a missense heterozygous SOX10 pathogenic variant (NM_006941.4:c.506C>T) in the proposita and in her mother, whose phenotype included exclusively anosmia and hypopigmented skin patches. The same variant has been described by Pingault et al. [Clin Genet. 2015;88(4):352-9] in a patient with apparently isolated bilateral severe SNHL. Conclusion: Our finding substantiates the extreme phenotypic variability of SOX10-related disorders, which range from classical KS and/or WS to contracted endophenotypes that could share a common pathway in the development of neural crest cells and highlights the need for careful evaluation and long-term follow-up of SOX10 patients, with special focus on atypical/additional and/or late-onset phenotypic traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA