Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nature ; 622(7984): 775-783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821706

RESUMO

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genética
2.
Am J Hum Genet ; 109(12): 2095-2100, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459976

RESUMO

The genotyping of millions of human samples has made it possible to evaluate variants across the human genome for their possible association with risks for numerous diseases and other traits by using genome-wide association studies (GWASs). The associations between phenotype and genotype found in GWASs make possible the construction of polygenic scores (PGSs), which aim to predict a trait or disease outcome in an individual on the basis of their genotype (in the disease case, the term polygenic risk score [PRS] is often used). PGSs have shown promise for studying the biology of complex traits and as a tool for evaluating individual disease risks in clinical settings. Although the quantity and quality of data to compute PGSs are increasing, challenges remain in the technical aspects of developing PGSs and in the ethical and social issues that might arise from their use. This ASHG Guidance emphasizes three major themes for researchers working with or interested in the application of PGSs in their own research: (1) developing diverse research cohorts; (2) fostering robustness in the development, application, and interpretation of PGSs; and (3) improving the communication of PGS results and their implications to broad audiences.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Pesquisa em Genética , Genótipo , Fenótipo
3.
PLoS Genet ; 18(9): e1010391, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137003

RESUMO

Theoretical population genetics has long studied the arrival and geographic spread of adaptive variants through the analysis of mathematical models of dispersal and natural selection. These models take on a renewed interest in the context of the COVID-19 pandemic, especially given the consequences that novel adaptive variants have had on the course of the pandemic as they have spread through global populations. Here, we review theoretical models for the spatial spread of adaptive variants and identify areas to be improved in future work, toward a better understanding of variants of concern in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) evolution and other contemporary applications. As we describe, characteristics of pandemics such as COVID-19-such as the impact of long-distance travel patterns and the overdispersion of lineages due to superspreading events-suggest new directions for improving upon existing population genetic models.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Pandemias , SARS-CoV-2/genética
4.
Mol Ecol ; 32(12): 3290-3307, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36974685

RESUMO

Seasonal migration of Nearctic-Neotropical passerine birds may have profound effects on the diversity and abundance of their host-associated microbiota. Migratory birds experience seasonal change in environments and diets throughout the course of the annual cycle that, along with recurrent biological events such as reproduction, may significantly impact their microbiota. In this study, we characterize the intestinal microbiota of four closely related species of migratory Catharus thrushes at three time points of their migratory cycle: during spring migration, on the summer breeding territories and during fall migration. Using observations replicated over 3 years, we determined that microbial community diversity of Catharus thrushes was significantly different across distinct time periods of the annual cycle, whereas community composition was more similar within than across years. Elevated alpha diversity in the summer birds compared to either migratory period indicated that birds may harbour a reduced microbiota during active migration. We also found that community composition of the microbiota did not substantially differ between host species. Finally, we recovered two phyla, Cyanobacteria and Planctomycetota, which are not commonly described from birds, that were in relatively high abundance in specific years. This study contributes to our growing understanding of how microbiota in wild birds vary throughout disparate ecological conditions and reveals potential axes across which an animal's microbial flexibility adapts to variable environments and recurrent biological conditions throughout the annual cycle.


Assuntos
Microbioma Gastrointestinal , Microbiota , Aves Canoras , Animais , Estações do Ano , Microbioma Gastrointestinal/genética , Migração Animal
5.
PLoS Genet ; 15(1): e1007908, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640906

RESUMO

In many species a fundamental feature of genetic diversity is that genetic similarity decays with geographic distance; however, this relationship is often complex, and may vary across space and time. Methods to uncover and visualize such relationships have widespread use for analyses in molecular ecology, conservation genetics, evolutionary genetics, and human genetics. While several frameworks exist, a promising approach is to infer maps of how migration rates vary across geographic space. Such maps could, in principle, be estimated across time to reveal the full complexity of population histories. Here, we take a step in this direction: we present a method to infer maps of population sizes and migration rates associated with different time periods from a matrix of genetic similarity between every pair of individuals. Specifically, genetic similarity is measured by counting the number of long segments of haplotype sharing (also known as identity-by-descent tracts). By varying the length of these segments we obtain parameter estimates associated with different time periods. Using simulations, we show that the method can reveal time-varying migration rates and population sizes, including changes that are not detectable when using a similar method that ignores haplotypic structure. We apply the method to a dataset of contemporary European individuals (POPRES), and provide an integrated analysis of recent population structure and growth over the last ∼3,000 years in Europe.


Assuntos
Evolução Biológica , Variação Genética/genética , Genética Populacional , Dinâmica Populacional/estatística & dados numéricos , Europa (Continente) , Haplótipos/genética , Humanos , Densidade Demográfica
6.
Mol Biol Evol ; 37(4): 943-951, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778174

RESUMO

Geographic patterns in human genetic diversity carry footprints of population history and provide insights for genetic medicine and its application across human populations. Summarizing and visually representing these patterns of diversity has been a persistent goal for human geneticists, and has revealed that genetic differentiation is frequently correlated with geographic distance. However, most analytical methods to represent population structure do not incorporate geography directly, and it must be considered post hoc alongside a visual summary of the genetic structure. Here, we estimate "effective migration" surfaces to visualize how human genetic diversity is geographically structured. The results reveal local patterns of differentiation in detail and emphasize that while genetic similarity generally decays with geographic distance, the relationship is often subtly distorted. Overall, the visualizations provide a new perspective on genetics and geography in humans and insight to the geographic distribution of human genetic variation.


Assuntos
Variação Genética , Genética Humana/métodos , Migração Humana , Geografia , Humanos
7.
PLoS Genet ; 14(9): e1007650, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188897

RESUMO

Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.


Assuntos
Aclimatação/genética , Povo Asiático/genética , Haplótipos/fisiologia , Herança Multifatorial/fisiologia , Seleção Genética/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Altitude , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Estudo de Associação Genômica Ampla , Hemoglobinas/análise , Humanos , Pessoa de Meia-Idade , Nepal , Tibet
8.
Mol Biol Evol ; 36(11): 2536-2547, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31297530

RESUMO

Knowledge of mutation rates is crucial for calibrating population genetics models of demographic history in units of years. However, mutation rates remain challenging to estimate because of the need to identify extremely rare events. We estimated the nuclear mutation rate in wolves by identifying de novo mutations in a pedigree of seven wolves. Putative de novo mutations were discovered by whole-genome sequencing and were verified by Sanger sequencing of parents and offspring. Using stringent filters and an estimate of the false negative rate in the remaining observable genome, we obtain an estimate of ∼4.5 × 10-9 per base pair per generation and provide conservative bounds between 2.6 × 10-9 and 7.1 × 10-9. Although our estimate is consistent with recent mutation rate estimates from ancient DNA (4.0 × 10-9 and 3.0-4.5 × 10-9), it suggests a wider possible range. We also examined the consequences of our rate and the accompanying interval for dating several critical events in canid demographic history. For example, applying our full range of rates to coalescent models of dog and wolf demographic history implies a wide set of possible divergence times between the ancestral populations of dogs and extant Eurasian wolves (16,000-64,000 years ago) although our point estimate indicates a date between 25,000 and 33,000 years ago. Aside from one study in mice, ours provides the only direct mammalian mutation rate outside of primates and is likely to be vital to future investigations of mutation rate evolution.

9.
Genome Res ; 27(1): 1-14, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27965293

RESUMO

Siberia and Northwestern Russia are home to over 40 culturally and linguistically diverse indigenous ethnic groups, yet genetic variation and histories of peoples from this region are largely uncharacterized. We present deep whole-genome sequencing data (∼38×) from 28 individuals belonging to 14 distinct indigenous populations from that region. We combined these data sets with additional 32 modern-day and 46 ancient human genomes to reconstruct genetic histories of several indigenous Northern Eurasian populations. We found that Siberian and East Asian populations shared 38% of their ancestry with a 45,000-yr-old Ust'-Ishim individual who was previously believed to have no modern-day descendants. Western Siberians trace 57% of their ancestry to ancient North Eurasians, represented by the 24,000-yr-old Siberian Mal'ta boy MA-1. Eastern Siberian populations formed a distinct sublineage that separated from other East Asian populations ∼10,000 yr ago. In addition, we uncovered admixtures between Siberians and Eastern European hunter-gatherers from Samara, Karelia, Hungary, and Sweden (from 8000-6600 yr ago); Yamnaya people (5300-4700 yr ago); and modern-day Northeastern Europeans. Our results provide new insights into genetic histories of Siberian and Northeastern European populations and evidence of ancient gene flow from Siberia into Europe.


Assuntos
DNA Mitocondrial/genética , Genética Populacional , Genoma Humano , População Branca/genética , Povo Asiático/genética , Etnicidade/genética , Fluxo Gênico , Variação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogeografia , Federação Russa , Sibéria
10.
Bioinformatics ; 35(8): 1292-1298, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30192911

RESUMO

MOTIVATION: Quality control plays a major role in the analysis of ancient DNA (aDNA). One key step in this quality control is assessment of DNA damage: aDNA contains unique signatures of DNA damage that distinguish it from modern DNA, and so analyses of damage patterns can help confirm that DNA sequences obtained are from endogenous aDNA rather than from modern contamination. Predominant signatures of DNA damage include a high frequency of cytosine to thymine substitutions (C-to-T) at the ends of fragments, and elevated rates of purines (A & G) before the 5' strand-breaks. Existing QC procedures help assess damage by simply plotting for each sample, the C-to-T mismatch rate along the read and the composition of bases before the 5' strand-breaks. Here we present a more flexible and comprehensive model-based approach to infer and visualize damage patterns in aDNA, implemented in an R package aRchaic. This approach is based on a 'grade of membership' model (also known as 'admixture' or 'topic' model) in which each sample has an estimated grade of membership in each of K damage profiles that are estimated from the data. RESULTS: We illustrate aRchaic on data from several aDNA studies and modern individuals from 1000 Genomes Project Consortium (2012). Here, aRchaic clearly distinguishes modern from ancient samples irrespective of DNA extraction, lab and sequencing protocols. Additionally, through an in-silico contamination experiment, we show that the aRchaic grades of membership reflect relative levels of exogenous modern contamination. Together, the outputs of aRchaic provide a concise visual summary of DNA damage patterns, as well as other processes generating mismatches in the data. AVAILABILITY AND IMPLEMENTATION: aRchaic is available for download from https://www.github.com/kkdey/aRchaic. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Dano ao DNA , Genoma , Citosina , DNA Antigo , Humanos , Análise de Sequência de DNA
11.
Nature ; 507(7491): 225-8, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24463515

RESUMO

Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet. However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer.


Assuntos
Alelos , Fósseis , Imunidade/genética , Pigmentação/genética , População Branca/genética , Agricultura/história , Evolução Biológica , Cavernas , Cor de Olho/genética , Genoma Humano/genética , Genômica , História Antiga , Humanos , Intolerância à Lactose/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Esqueleto , Pigmentação da Pele/genética , Espanha/etnologia
13.
Mol Biol Evol ; 35(4): 1003-1017, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361025

RESUMO

The haplotypes of a beneficial allele carry information about its history that can shed light on its age and the putative cause for its increase in frequency. Specifically, the signature of an allele's age is contained in the pattern of variation that mutation and recombination impose on its haplotypic background. We provide a method to exploit this pattern and infer the time to the common ancestor of a positively selected allele following a rapid increase in frequency. We do so using a hidden Markov model which leverages the length distribution of the shared ancestral haplotype, the accumulation of derived mutations on the ancestral background, and the surrounding background haplotype diversity. Using simulations, we demonstrate how the inclusion of information from both mutation and recombination events increases accuracy relative to approaches that only consider a single type of event. We also show the behavior of the estimator in cases where data do not conform to model assumptions, and provide some diagnostics for assessing and improving inference. Using the method, we analyze population-specific patterns in the 1000 Genomes Project data to estimate the timing of adaptation for several variants which show evidence of recent selection and functional relevance to diet, skin pigmentation, and morphology in humans.


Assuntos
Alelos , Evolução Biológica , Haplótipos , Modelos Genéticos , Seleção Genética , Genoma Humano , Humanos , Mutação , Recombinação Genética
14.
Mol Biol Evol ; 35(5): 1190-1209, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688543

RESUMO

Pigmentation is often used to understand how natural selection affects genetic variation in wild populations since it can have a simple genetic basis, and can affect a variety of fitness-related traits (e.g., camouflage, thermoregulation, and sexual display). In gray wolves, the K locus, a ß-defensin gene, causes black coat color via a dominantly inherited KB allele. The allele is derived from dog-wolf hybridization and is at high frequency in North American wolf populations. We designed a DNA capture array to probe the geographic origin, age, and number of introgression events of the KB allele in a panel of 331 wolves and 20 dogs. We found low diversity in KB, but not ancestral ky, wolf haplotypes consistent with a selective sweep of the black haplotype across North America. Further, North American wolf KB haplotypes are monophyletic, suggesting that a single adaptive introgression from dogs to wolves most likely occurred in the Northwest Territories or Yukon. We use a new analytical approach to date the origin of the KB allele in Yukon wolves to between 1,598 and 7,248 years ago, suggesting that introgression with early Native American dogs was the source. Using population genetic simulations, we show that the K locus is undergoing natural selection in four wolf populations. We find evidence for balancing selection, specifically in Yellowstone wolves, which could be a result of selection for enhanced immunity in response to distemper. With these data, we demonstrate how the spread of an adaptive variant may have occurred across a species' geographic range.


Assuntos
Cor de Cabelo/genética , Seleção Genética , Lobos/genética , beta-Defensinas/genética , Animais , Simulação por Computador , Cães , Frequência do Gene , Variação Genética , Haplótipos , Homozigoto , América do Norte
15.
PLoS Comput Biol ; 14(4): e1006096, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659582

RESUMO

Pooled DNA from multiple unknown organisms arises in a variety of contexts, for example microbial samples from ecological or human health research. Determining the composition of pooled samples can be difficult, especially at the scale of modern sequencing data and reference databases. Here we propose a novel method for taxonomic profiling in pooled DNA that combines the speed and low-memory requirements of k-mer based pseudoalignment with a likelihood framework that uses base quality information to better resolve multiply mapped reads. We apply the method to the problem of classifying 16S rRNA reads using a reference database of known organisms, a common challenge in microbiome research. Using simulations, we show the method is accurate across a variety of read lengths, with different length reference sequences, at different sample depths, and when samples contain reads originating from organisms absent from the reference. We also assess performance in real 16S data, where we reanalyze previous genetic association data to show our method discovers a larger number of quantitative trait associations than other widely used methods. We implement our method in the software Karp, for k-mer based analysis of read pools, to provide a novel combination of speed and accuracy that is uniquely suited for enhancing discoveries in microbial studies.


Assuntos
Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Composição de Bases , Biologia Computacional , Simulação por Computador , DNA/química , DNA/genética , Bases de Dados Genéticas , Humanos , Microbiota/genética , Locos de Características Quantitativas , Alinhamento de Sequência/estatística & dados numéricos , Software
16.
Conserv Biol ; 33(2): 239-249, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311266

RESUMO

Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.


Aplicaciones de la Teoría de Circuitos a la Conservación y a la Ciencia de la Conectividad Resumen Quienes practican la conservación han reconocido durante mucho tiempo que la conectividad ecológica es una prioridad mundial para la preservación de la biodiversidad y el funcionamiento del ecosistema. Durante los primeros años de la ciencia de la conservación los ecólogos difundieron los principios de la biografía de islas para evaluar la conectividad con base en la proximidad entre el origen y el fragmento, así como otras medidas derivadas de los mapas binarios de los hábitats. Entre 2006 y 2008 el fallecido Brad McRae introdujo la teoría de circuitos como una estrategia alternativa para modelar el flujo génico y la dispersión o las rutas de movimiento de los organismos. McRae propuso conceptos y medidas de la teoría de circuitos eléctricos como una manera robusta para cuantificar el movimiento a lo largo de múltiples caminos posibles en un paisaje, no solamente a lo largo de un camino o corredor de menor costo. La teoría de circuitos ofrece muchos enlaces teóricos, conceptuales y prácticos con la ciencia de la conservación. Revisamos 459 estudios recientes que citan la teoría de circuitos o el software de fuente abierta Circuitscape. Nos enfocamos en las aplicaciones de la teoría de circuitos a la ciencia y a la práctica de la conservación de la conectividad, incluyendo temas como la genética poblacional y del paisaje, movimiento y caminos de dispersión de los organismos, barreras antropogénicas de la conectividad, comportamiento ante incendios, flujo del agua, y servicios ambientales. La teoría de circuitos probablemente tenga un efecto sobre la ciencia de la conservación y quienes la practican por medio de una percepción mejorada de las dinámicas del paisaje, el movimiento animal, y los estudios de uso de hábitat, y por medio del desarrollo de nuevas herramientas de software para el análisis de datos y su visualización. La influencia de la teoría de circuitos sobre la conservación viene de la base teórica y la elegancia de la estrategia y de las colaboraciones fuertes y la comunidad activa de usuarios que han surgido recientemente. La teoría de circuitos proporciona un trampolín para el entendimiento ecológico y seguirá siendo una importante herramienta de conservación para los investigadores y practicantes en todo el mundo.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Ecologia , Fluxo Gênico , Ilhas
17.
PLoS Genet ; 12(3): e1005851, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26943675

RESUMO

Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.


Assuntos
Genética Populacional , Genômica , Metabolismo dos Lipídeos/genética , Seleção Genética , Animais , Demografia , Cães , Genoma , Polimorfismo de Nucleotídeo Único
18.
Bioinformatics ; 33(4): 594-595, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742697

RESUMO

Summary: One of the key characteristics of any genetic variant is its geographic distribution. The geographic distribution can shed light on where an allele first arose, what populations it has spread to, and in turn on how migration, genetic drift, and natural selection have acted. The geographic distribution of a genetic variant can also be of great utility for medical/clinical geneticists and collectively many genetic variants can reveal population structure. Here we develop an interactive visualization tool for rapidly displaying the geographic distribution of genetic variants. Through a REST API and dynamic front-end, the Geography of Genetic Variants (GGV) browser ( http://popgen.uchicago.edu/ggv/ ) provides maps of allele frequencies in populations distributed across the globe. Availability and Implementation: GGV is implemented as a website ( http://popgen.uchicago.edu/ggv/ ) which employs an API to access frequency data ( http://popgen.uchicago.edu/freq_api/ ). Python and javascript source code for the website and the API are available at: http://github.com/NovembreLab/ggv/ and http://github.com/NovembreLab/ggv-api/ . Contact: jnovembre@uchicago.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Variação Genética , Genoma Humano , Genômica/métodos , Filogeografia/métodos , Software , Humanos
19.
Conserv Biol ; 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311257

RESUMO

Powerful innovations can occur when a concept is taken from one field and used to solve a problem in an unrelated field. In fact, it has been shown that as the distance between a problem solver's field of technical expertise and the focal field of a problem increase, so does the probability of success. This article is protected by copyright. All rights reserved.

20.
BMC Genomics ; 18(1): 977, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258433

RESUMO

BACKGROUND: Whole genome re-sequencing data from dogs and wolves are now commonly used to study how natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms, microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a contributor to phenotypic diversity, has not been extensively explored in canids. RESULTS: Here, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially functional impacts. CONCLUSIONS: This work is the first comparison of genome wide CNV patterns in domestic and wild canids using whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes on the evolution of the domestic dog.


Assuntos
Variações do Número de Cópias de DNA , Cães/genética , Lobos/genética , Animais , Cruzamento , Genômica , Duplicações Segmentares Genômicas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA