Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853519

RESUMO

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Assuntos
Marcha , Cavalos/genética , Locos de Características Quantitativas , Animais , Marcha/genética , Estudo de Associação Genômica Ampla , Fenótipo
2.
Sci Rep ; 13(1): 8954, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268661

RESUMO

The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.


Assuntos
Animais Selvagens , Evolução Biológica , Masculino , Animais , Cavalos/genética , Filogenia , Animais Selvagens/genética , Cromossomo Y/genética , Genoma , Haplótipos , Variação Genética , DNA Mitocondrial/genética
4.
PLoS One ; 13(8): e0202584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30118522

RESUMO

The Colombian paso horse, the most important horse breed in Colombia, performs specific and particular gaits (paso fino, trocha, and Colombian trot), which display different footfall patterns and stride frequencies. The breed has been selected for gait and conformation for more than 50 years and we hypothesize that this selection has led to kinematic differences of the gaits that can be explained by different genetic variants. Hence, the aims of the study were: 1. To identify if there are any differences in the kinematic and genetic variants between the Colombian paso horse's gaits. 2. To evaluate if and how much the gait differences were explained by the nonsense mutation in the DMRT3 gene and 3. To evaluate these results for selecting and controlling the horses gait performance. To test our hypotheses, kinematic data, microsatellites and DMRT3 genotypes for 187 Colombian paso horses were analyzed. The results indicated that there are significant kinematic and DMRT3 differences between the Colombian paso horse's gaits, and those parameters can be used partially to select and control the horses gait performance. However, the DMRT3 gene does not play a major role in controlling the trocha and the Colombian trot gaits. Therefore, modifying genes likely influence these gaits. This study may serve as a foundation for implementing a genetic selection program in the Colombian paso horse and future gene discovery studies for locomotion pattern in horses.


Assuntos
Fenômenos Biomecânicos/genética , Marcha/genética , Cavalos/genética , Fatores de Transcrição/genética , Animais , Cruzamento , Códon sem Sentido , Colômbia , Genótipo , Cavalos/fisiologia , Humanos , Locomoção/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA