Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(11): 2123-2132, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37881943

RESUMO

Biomolecules labeled with positron-emitting radionuclides like fluorine-18 or radiometals like copper-64 and zirconium-89 are increasingly employed in nuclear medicine for diagnosis purposes. Given the fragility and complexity of these compounds, their labeling requires mild conditions. Besides, it is essential to develop methods inducing minimal modification of the tertiary structure, as it is fundamental for the biological activity of such complex entities. Given these requirements, disulfide rebridging represents a promising possibility since it allows protein modification as well as conservation of the tertiary structure. In this context, we have developed an original radiofluorinated dibromopyridazine dione prosthetic group for labeling of disulfide-containing biomolecules via rebridging. We employed it to radiolabel octreotide, a somatostatin analogue, and to radiolabel fragment antigen binding (Fab) targeting programmed death-ligand 1 (PD-L1), whose properties were then evaluated in vitro and in vivo by positron emission tomography (PET) imaging. We next extended our strategy to the radiolabeling of cetuximab, a monoclonal antibody, with various radiometals commonly used in PET imaging (zirconium-89, copper-64) by developing various rebridging molecules bearing the appropriate chelators. The stabilities of the radiolabeled antibody conjugates were assessed in biological conditions.


Assuntos
Radioisótopos de Cobre , Radioisótopos de Flúor , Radioisótopos , Zircônio , Radioisótopos de Cobre/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
2.
Mol Pharm ; 19(10): 3673-3680, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35998011

RESUMO

Molecular imaging with PET offers an alternative method to quantify programmed-death-ligand 1 (PD-L1) to accurately select patients for immunotherapies. More and more clinical and preclinical trials involve radiolabeling of antibody fragments for their desirably fast clearance and high tumor penetration. As the radiolabeling strategy can significantly impact pharmacokinetics and biodistribution, we explored in this work a site-specific radiofluorination strategy on an anti-PD-L1 fragment antigen-binding (Fab) and compared the pharmacokinetic and biodistribution properties with the same Fab labeled using stochastic radiolabeling chemistry. We applied an enzymatic bioconjugation mediated by a variant of the lipoic acid ligase (LplA) that promotes the formation of an amide bond between a short peptide cloned onto the C terminus of the Fab. A synthetic analogue of the enzyme natural substrate, lipoic acid, was radiolabeled with fluorine-18 for site-specific conjugation by LplA. We compared the biodistribution of the site-specifically labeled Fab with a stochastically labeled Fab on lysine side chains in tumor-bearing mice. The two methods of fluorination demonstrate a comparable whole-body biodistribution. The 89Zr-labeled Fab had different biodistribution compared to either 18F-labeled Fab. We attribute the difference to [89Zr] metabolism. Fab-LAP-[18F]FPyOctA therefore reflects better the true pharmacokinetic profile of the Fab.


Assuntos
Neoplasias , Ácido Tióctico , Amidas , Animais , Antígeno B7-H1 , Linhagem Celular Tumoral , Radioisótopos de Flúor , Fragmentos de Imunoglobulinas/metabolismo , Ligantes , Ligases/metabolismo , Lisina/metabolismo , Camundongos , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
3.
J Immunol ; 195(4): 1891-901, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136431

RESUMO

Cyclin B1 (CCNB1) is considered as a potential target for a cancer vaccine, as it is overexpressed in many malignant cells, while being transiently expressed in normal cells. To evaluate the CD4 T cell response to CCNB1, we derived T cell lines by multiple weekly rounds of stimulation with recombinant CCNB1 of T cells collected in healthy donors (long-term T cell assays). T cell lines were specific for 15 immunodominant peptides and derived preferentially from naive T cells. From 74 overlapping peptides, 20 peptides were selected for their broad specificity of binding to HLA class II molecules and included most of the immunodominant epitopes. They primed in vitro a large number of specific CD4 T cell lines in all the donors. Immunodominant epitopes were the most efficacious in long-term T cell assays, both in terms of number of specific T cell lines and number of responding donors. The 20 peptides were also submitted to short-term T cell assays using cells collected in healthy and cancer patients with the aim to evaluate the memory response. The recognized peptides differed from the immunodominant peptides and were part of the best promiscuous peptides. We also observed pre-existing CCNB1-specifc IgG Abs in both healthy and cancer donors. Long- and short-term T cell assays revealed that CCNB1 contained many CD4 T cell epitopes, which are differentially recognized by pre-existing naive and memory CD4 T cells. These observations are of value for the design of cancer vaccines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ciclina B1/imunologia , Epitopos de Linfócito T/imunologia , Memória Imunológica , Neoplasias/imunologia , Anticorpos/imunologia , Estudos de Casos e Controles , Linhagem Celular , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Epitopos Imunodominantes/imunologia , Imunoglobulina G/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia
4.
Bioconjug Chem ; 27(10): 2407-2417, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27564088

RESUMO

In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.


Assuntos
Metaloproteinase 12 da Matriz/análise , Imagem Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animais , Carbocianinas , Técnicas de Química Sintética , Cristalografia por Raios X , Células HeLa , Humanos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Sondas Moleculares/farmacocinética , Óptica e Fotônica/métodos , Peptídeos/química , Distribuição Tecidual
5.
Microb Cell Fact ; 12: 37, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607455

RESUMO

BACKGROUND: Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. RESULTS: Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. CONCLUSIONS: Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB(-)/gor(-) strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.


Assuntos
Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Citoplasma/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
MAbs ; 15(1): 2175311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36797224

RESUMO

Delineating the precise regions on an antigen that are targeted by antibodies has become a key step for the development of antibody therapeutics. X-ray crystallography and cryogenic electron microscopy are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, they are labor-intensive and a successful outcome is not guaranteed. We used deep mutational scanning (DMS) of the human LAMP-1 antigen displayed on yeast surface and leveraged next-generation sequencing to observe the effect of individual mutants on the binding of two LAMP-1 antibodies and to determine their functional epitopes on LAMP-1. Fine-tuned epitope mapping by DMS approaches is augmented by knowledge of experimental antigen structure. As human LAMP-1 structure has not yet been solved, we used the AlphaFold predicted structure of the full-length protein to combine with DMS data and ultimately finely map antibody epitopes. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one of the two antibodies with a LAMP-1 luminal domain. Finally, we used AlphaFold models of non-human LAMP-1 to understand the lack of mAb cross-reactivity. While both epitopes in the murine form exhibit multiple mutations in comparison to human LAMP-1, only one and two mutations in the Macaca form suffice to hinder the recognition by mAb B and A, respectively. Altogether, this study promotes a new application of AlphaFold to speed up precision mapping of antibody-antigen interactions and consequently accelerate antibody engineering for optimization.


Assuntos
Anticorpos Monoclonais , Antígenos , Animais , Camundongos , Antígenos/metabolismo , Mapeamento de Epitopos/métodos , Epitopos , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Theranostics ; 13(15): 5584-5596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908736

RESUMO

Rationale: The passage of antibodies through the blood-brain barrier (BBB) and the blood-tumoral barrier (BTB) is determinant not only to increase the immune checkpoint inhibitors efficacy but also to monitor prognostic and predictive biomarkers such as the programmed death ligand 1 (PD-L1) via immunoPET. Although the involvement of neonatal Fc receptor (FcRn) in antibody distribution has been demonstrated, its function at the BBB remains controversial, while it is unknown at the BTB. In this context, we assessed FcRn's role by pharmacokinetic immunoPET imaging combined with focused ultrasounds (FUS) using unmodified and FcRn low-affinity IgGs targeting PD-L1 in a preclinical orthotopic glioblastoma model. Methods: Transcranial FUS were applied over the whole brain in mice shortly before injecting the anti-PD-L1 IgG 89Zr-DFO-C4 or its FcRn low-affinity mutant 89Zr-DFO-C4Fc-MUT in a syngeneic glioblastoma murine model (GL261-GFP). Brain uptake was measured from PET scans acquired up to 7 days post-injection. Kinetic modeling was performed to compare the brain kinetics of both C4 formats. Results: FUS efficiently enhanced the delivery of both C4 radioligands in the brain with high reproducibility. 89Zr-DFO-C4Fc-MUT mean concentrations in the brain reached a significant uptake of 3.75±0.41%ID/cc with FUS against 1.92±0.45%ID/cc without, at 1h post-injection. A substantial and similar entry of both C4 radioligands was observed at a rate of 0.163±0.071 mL/h/g of tissue during 10.4±4.6min. The impaired interaction with FcRn of 89Zr-DFO-C4Fc-MUT significantly decreased the efflux constant from the healthy brain tissue to plasma compared with non-mutated IgG. Abolishing FcRn interaction allows determining the target engagement related to the specific binding as soon as 12h post-injection. Conclusion: Abolishing Fc-FcRn interaction confers improved kinetic properties to 89Zr-DFO-C4Fc-MUT for immunoPET imaging. FUS-aided BBB/BTB disruption enables quantitative imaging of PD-L1 expression by glioblastoma tumors within the brain.


Assuntos
Antígeno B7-H1 , Glioblastoma , Animais , Camundongos , Anticorpos Monoclonais/química , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Zircônio/química
8.
Front Immunol ; 14: 1197919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575221

RESUMO

Removal of CD4 T cell epitopes from therapeutic antibody sequences is expected to mitigate their potential immunogenicity, but its application is complicated by the location of their T cell epitopes, which mainly overlap with complementarity-determining regions. We therefore evaluated the flexibility of antibody sequences to reduce the predicted affinity of corresponding peptides for HLA II molecules and to maintain antibody binding to its target in order to guide antibody engineering for mitigation of predicted immunogenicity. Permissive substitutions to reduce affinity of peptides for HLA II molecules were identified by establishing a heatmap of HLA class II binding using T-cell epitope prediction tools, while permissive substitutions preserving binding to the target were identified by means of deep mutational scanning and yeast surface display. Combinatorial libraries were then designed to identify active clones. Applied to adalimumab, an anti-TNFα human antibody, this approach identified 200 mutants with a lower HLA binding score than adalimumab. Three mutants were produced as full-length antibodies and showed a higher affinity for TNFα and neutralization ability than adalimumab. This study also sheds light on the permissiveness of antibody sequences with regard to functionality and predicted T cell epitope content.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Humanos , Adalimumab , Mutação , Peptídeos , Anticorpos
9.
Mol Metab ; 67: 101662, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566984

RESUMO

OBJECTIVE: The liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood. We previously suggested that out of the three M1, M2 and M3 subdomains of the C-terminal Cys/His-rich-domain (CHRD) of PCSK9, only M2 is critical for the activity of extracellular of PCSK9 on cell surface LDLR. This likely implicates the binding of M2 to an unknown membrane-associated "protein X" that would escort the complex to endosomes/lysosomes for degradation. We reported that a nanobody P1.40 binds the M1 and M3 domains of the CHRD and inhibits the function of PCSK9. It was also reported that the cytosolic adenylyl cyclase-associated protein 1 (CAP1) could bind M1 and M3 subdomains and enhance the activity of PCSK9. In this study, we determined the 3-dimensional structure of the CHRD-P1.40 complex to understand the intricate interplay between P1.40, CAP1 and PCSK9 and how they regulate LDLR degradation. METHODS: X-ray diffraction of the CHRD-P1.40 complex was analyzed with a 2.2 Å resolution. The affinity and interaction of PCSK9 or CHRD with P1.40 or CAP1 was analyzed by atomic modeling, site-directed mutagenesis, bio-layer interferometry, expression in hepatic cell lines and immunocytochemistry to monitor LDLR degradation. The CHRD-P1.40 interaction was further analyzed by deep mutational scanning and binding assays to validate the role of predicted critical residues. Conformational changes and atomic models were obtained by small angle X-ray scattering (SAXS). RESULTS: We demonstrate that PCSK9 exists in a closed or open conformation and that P1.40 favors the latter by binding key residues in the M1 and M3 subdomains of the CHRD. Our data show that CAP1 is well secreted by hepatic cells and binds extracellular PCSK9 at distinct residues in the M1 and M3 modules and in the acidic prodomain. CAP1 stabilizes the closed conformation of PCSK9 and prevents P1.40 binding. However, CAP1 siRNA only partially inhibited PCSK9 activity on the LDLR. By modeling the previously reported interaction between M2 and an R-X-E motif in HLA-C, we identified Glu567 and Arg549 as critical M2 residues binding HLA-C. Amazingly, these two residues are also required for the PCSK9-induced LDLR degradation. CONCLUSIONS: The present study reveals that CAP1 enhances the function of PCSK9, likely by twisting the protein into a closed configuration that exposes the M2 subdomain needed for targeting the PCSK9-LDLR complex to degradation compartments. We hypothesize that "protein X", which is expected to guide the LDLR-PCSK9-CAP1 complex to these compartments after endocytosis into clathrin-coated vesicles, is HLA-C or a similar MHC-I family member. This conclusion is supported by the PCSK9 natural loss-of-function Q554E and gain-of-function H553R M2 variants, whose consequences are anticipated by our modeling.


Assuntos
Antígenos HLA-C , Pró-Proteína Convertase 9 , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Receptores de LDL/metabolismo
10.
Front Immunol ; 13: 808606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185895

RESUMO

Pegylation of biopharmaceuticals is the most common strategy to increase their half-life in the blood and is associated with a reduced immunogenicity. As antigen presentation is a primary event in the activation of CD4 T-cells and initiation of Anti-Drug Antibody (ADA) response, we investigated the role of the PEG molecule on the T-cell reactivity of certolizumab pegol (CZP), a pegylated anti-TNFα Fab. We generated T-cell lines raised against CZP and its non-pegylated form (CZNP) and demonstrated CZP primed few T-cells in comparison to CZNP. CZP-primed lines from 3 donors responded to a total of 5 epitopes, while CZNP-primed lines from 3 donors responded to a total of 7 epitopes, 4 epitopes were recognized by both CZP- and CZNP-primed lines. In line with this difference of T-cell reactivity, CZP is less internalized by the dendritic cells than CZNP. In vitro digestion assay of CZP by Cathepsin B showed a rapid removal of the PEG moiety, suggesting a limited influence of PEG on CZP proteolysis. We therefore demonstrate that pegylation diminishes antigen capture by dendritic cells, peptide presentation to T-cells and T-cell priming. This mechanism might reduce immunogenicity and contribute to the long half-life of CZP and possibly of other pegylated molecules.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Certolizumab Pegol/uso terapêutico , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Linfócitos T/metabolismo , Artrite Reumatoide/metabolismo , Células Dendríticas/imunologia , Interações Medicamentosas , Epitopos/imunologia , Meia-Vida , Humanos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
J Nucl Med ; 63(8): 1259-1265, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34933891

RESUMO

PET imaging of programmed cell death ligand 1 (PD-L1) may help to noninvasively predict and monitor responses to anti-programmed cell death 1/anti-PD-L1 immunotherapies. In this study, we compared the imaging characteristics of 3 radioligands derived from the anti-PD-L1 IgG1 complement 4 (C4). In addition to the IgG C4, we produced a fragment antigen-binding (Fab) C4, as well as a double-mutant IgG C4 (H310A/H435Q) with minimal affinity for the murine neonatal Fc receptor. Methods: The pharmacokinetics, biodistribution, and dosimetry of the 3 89Zr-labeled C4 ligands were compared by longitudinal PET/CT imaging in nude mice bearing subcutaneous human non-small cell lung cancer xenografts with positive (H1975 model) or negative (A549 model) endogenous PD-L1 expression. Results: The C4 radioligands substantially accumulated in PD-L1-positive tumors but not in PD-L1-negative tumors or in blocked PD-L1-positive tumors, confirming their PD-L1-specific tumor targeting. 89Zr-Fab C4 and 89Zr-IgG C4 (H310A/H435Q) were rapidly eliminated compared with 89Zr-IgG C4. Consequently, maximal tumor-to-muscle ratios were obtained earlier, at 4 h after injection for 89Zr-Fab C4 (ratio, ∼6) and 24 h after injection for 89Zr-IgG C4 (H310A/H435Q) (ratio, ∼9), versus 48 h after injection for 89Zr-IgG C4 (ratio, ∼8). Background activity in nontumor tissues was low, except for high kidney retention of 89Zr-Fab C4 and persistent liver accumulation of 89Zr-IgG C4 (H310A/H435Q) compared with 89Zr-IgG C4. Dosimetry estimates suggested that the C4 radioligands would yield organ-absorbed doses tolerable for repeated clinical PET imaging studies. Conclusion: This study highlights the potential of designing radioligands with shorter pharmacokinetics for PD-L1 immuno-PET imaging in a preclinical model and encourages further clinical translation of such radioligands.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoglobulina G , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Zircônio
12.
MAbs ; 14(1): 2076775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593235

RESUMO

Here, we report the molecular engineering of nanobodies that bind with picomolar affinity to both SARS-CoV-1 and SARS-CoV-2 receptor-binding domains (RBD) and are highly neutralizing. We applied deep mutational engineering to VHH72, a nanobody initially specific for SARS-CoV-1 RBD with little cross-reactivity to SARS-CoV-2 antigen. We first identified all the individual VHH substitutions that increase binding to SARS-CoV-2 RBD and then screened highly focused combinatorial libraries to isolate engineered nanobodies with improved properties. The corresponding VHH-Fc molecules show high affinities for SARS-CoV-2 antigens from various emerging variants and SARS-CoV-1, block the interaction between ACE2 and RBD, and neutralize the virus with high efficiency. Its rare specificity across sarbecovirus relies on its peculiar epitope outside the immunodominant regions. The engineered nanobodies share a common motif of three amino acids, which contribute to the broad specificity of recognition. Our results show that deep mutational engineering is a very powerful method, especially to rapidly adapt existing antibodies to new variants of pathogens.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Anticorpos Neutralizantes , Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , Humanos , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
13.
J Med Chem ; 65(9): 6953-6968, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35500280

RESUMO

In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.


Assuntos
Imunoconjugados , Radioisótopos de Carbono
14.
PLoS Negl Trop Dis ; 15(3): e0009231, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33711056

RESUMO

Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Disenteria Bacilar/terapia , Salmonelose Animal/terapia , Salmonella typhimurium/imunologia , Shigella flexneri/imunologia , Sistemas de Secreção Tipo III/imunologia , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Disenteria Bacilar/microbiologia , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Salmonelose Animal/microbiologia
15.
J Control Release ; 328: 304-312, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860928

RESUMO

Epidermal growth factor receptor (EGFR), involved in cell proliferation and migration, is overexpressed in ~50% of glioblastomas. Anti-EGFR based strategies using monoclonal antibodies (mAb) such as cetuximab (CTX) have been proposed for central nervous system (CNS) cancer therapy. However, the blood-brain barrier (BBB) drastically restricts their brain penetration which limits their efficacy for the treatment of glioblastomas. Herein, a longitudinal PET imaging study was performed to assess the relevance and the impact of focused ultrasound (FUS)-mediated BBB permeabilization on the brain exposure to the anti-EGFR mAb CTX over time. For this purpose, FUS permeabilization process with microbubbles was applied on intact BBB mouse brain before the injection of 89Zr-labeled CTX for longitudinal imaging monitoring. FUS induced a dramatic increase in mAb penetration to the brain, 2 times higher compared to the intact BBB. The transfer of 89Zr-CTX from blood to the brain was rendered significant by FUS (kuptake = 1.3 ± 0.23 min-1 with FUS versus kuptake = 0 ± 0.006 min-1 without FUS). FUS allowed significant and prolonged exposure to mAb in the brain parenchyma. This study confirms the potential of FUS as a target delivery method for mAb in CNS.


Assuntos
Barreira Hematoencefálica , Microbolhas , Animais , Encéfalo , Cetuximab , Sistemas de Liberação de Medicamentos , Cinética , Camundongos
16.
MAbs ; 10(5): 720-729, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29708852

RESUMO

Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.


Assuntos
Anticorpos Monoclonais/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Anticorpos de Cadeia Única/metabolismo , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Expressão Gênica , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
17.
Front Oncol ; 8: 517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483475

RESUMO

The efficacy of an antitumoral vaccine relies both on the choice of the antigen targeted and on its design. The tumor antigen survivin is an attractive target to develop therapeutic cancer vaccines because of its restricted over-expression and vital functions in most human tumors. Accordingly, several clinical trials targeting survivin in various cancer indications have been conducted. Most of them relied on short peptide-based vaccines and showed promising, but limited clinical results. In this study, we investigated the immunogenicity and therapeutic efficacy of a new long synthetic peptide (LSP)-based cancer vaccine targeting the tumor antigen survivin (SVX). This SVX vaccine is composed of three long synthetic peptides containing several CD4+ and CD8+ T-cell epitopes, which bind to various HLA class II and class I molecules. Studies in healthy individuals showed CD4+ and CD8+ T-cell immunogenicity of SVX peptides in human, irrespective of the individual's HLA types. Importantly, high frequencies of spontaneous T-cell precursors specific to SVX peptides were also detected in the blood of various cancer patients, demonstrating the absence of tolerance against these peptides. We then demonstrated SVX vaccine's high therapeutic efficacy against four different established murine tumor models, associated with its capacity to generate both specific cytotoxic CD8+ and multifunctional Th1 CD4+ T-cell responses. When tumors were eradicated, generated memory T-cell responses protected against rechallenge allowing long-term protection against relapses. Treatment with SVX vaccine was also found to reshape the tumor microenvironment by increasing the tumor infiltration of both CD4+ and CD8+ T cells but not Treg cells therefore tipping the balance toward a highly efficient immune response. These results highlight that this LSP-based SVX vaccine appears as a promising cancer vaccine and warrants its further clinical development.

18.
J Vis Exp ; (89): e51464, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25146501

RESUMO

Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.


Assuntos
Escherichia coli/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas Recombinantes de Fusão/isolamento & purificação , Peçonhas/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Peçonhas/biossíntese , Peçonhas/genética
19.
FEBS J ; 280(1): 139-59, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121732

RESUMO

Artificial miniproteins that are able to target catalytic sites of matrix metalloproteinases (MMPs) were designed using a functional motif-grafting approach. The motif corresponded to the four N-terminal residues of TIMP-2, a broad-spectrum protein inhibitor of MMPs. Scaffolds that are able to reproduce the functional topology of this motif were obtained by exhaustive screening of the Protein Data Bank (PDB) using STAMPS software (search for three-dimensional atom motifs in protein structures). Ten artificial protein binders were produced. The designed proteins bind catalytic sites of MMPs with affinities ranging from 450 nm to 450 µm prior to optimization. The crystal structure of one artificial binder in complex with the catalytic domain of MMP-12 showed that the inter-molecular interactions established by the functional motif in the artificial binder corresponded to those found in the MMP-14-TIMP-2 complex, albeit with some differences in geometry. Molecular dynamics simulations of the ten binders in complex with MMP-14 suggested that these scaffolds may allow partial reproduction of native inter-molecular interactions, but differences in geometry and stability may contribute to the lower affinity of the artificial protein binders compared to the natural protein binder. Nevertheless, these results show that the in silico design method used provides sets of protein binders that target a specific binding site with a good rate of success. This approach may constitute the first step of an efficient hybrid computational/experimental approach to protein binder design.


Assuntos
Inibidores de Metaloproteinases de Matriz/química , Simulação de Dinâmica Molecular , Proteínas Recombinantes de Fusão/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Ligação de Hidrogênio , Metaloproteinase 12 da Matriz/química , Metaloproteinase 14 da Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/síntese química , Inibidor Tecidual de Metaloproteinase-2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA