Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985614

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19, which was declared a global pandemic in March 2020 by the World Health Organization (WHO). Since SARS-CoV-2 main protease plays an essential role in the virus's life cycle, the design of small drug molecules with lower molecular weight has been a promising development targeting its inhibition. Herein, we evaluated the novel peptidomimetic azatripeptide and azatetrapeptide nitriles against SARS-CoV-2 main protease. We employed molecular dynamics (MD) simulations to elucidate the selected compounds' binding free energy profiles against SARS-CoV-2 and further unveil the residues responsible for the drug-binding properties. Compound 8 exhibited the highest binding free energy of -49.37 ± 0.15 kcal/mol, followed by compound 7 (-39.83 ± 0.19 kcal/mol), while compound 17 showed the lowest binding free energy (-23.54 ± 0.19 kcal/mol). In addition, the absorption, distribution, metabolism, and excretion (ADME) assessment was performed and revealed that only compound 17 met the drug-likeness parameters and exhibited high pharmacokinetics to inhibit CYP1A2, CYP2C19, and CYP2C9 with better absorption potential and blood-brain barrier permeability (BBB) index. The additional intermolecular evaluations suggested compound 8 as a promising drug candidate for inhibiting SARS-CoV-2 Mpro. The substitution of isopropane in compound 7 with an aromatic benzene ring in compound 8 significantly enhanced the drug's ability to bind better at the active site of the SARS-CoV-2 Mpro.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , SARS-CoV-2 , Simulação de Dinâmica Molecular , Ésteres/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases
2.
J Comput Aided Mol Des ; 32(6): 687-701, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845435

RESUMO

Tuberculosis remains a dreadful disease that has claimed many human lives worldwide and elimination of the causative agent Mycobacterium tuberculosis also remains elusive. Multidrug-resistant TB is rapidly increasing worldwide; therefore, there is an urgent need for improving the current antibiotics and novel drug targets to successfully curb the TB burden. L,D-Transpeptidase 2 is an essential protein in Mtb that is responsible for virulence and growth during the chronic stage of the disease. Both D,D- and L,D-transpeptidases are inhibited concurrently to eradicate the bacterium. It was recently discovered that classic penicillins only inhibit D,D-transpeptidases, while L,D-transpeptidases are blocked by carbapenems. This has contributed to drug resistance and persistence of tuberculosis. Herein, a hybrid two-layered ONIOM (B3LYP/6-31G+(d): AMBER) model was used to extensively investigate the binding interactions of LdtMt2 complexed with four carbapenems (biapenem, imipenem, meropenem, and tebipenem) to ascertain molecular insight of the drug-enzyme complexation event. In the studied complexes, the carbapenems together with catalytic triad active site residues of LdtMt2 (His187, Ser188 and Cys205) were treated at with QM [B3LYP/6-31+G(d)], while the remaining part of the complexes were treated at MM level (AMBER force field). The resulting Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) for all complexes showed that the carbapenems exhibit reasonable binding interactions towards LdtMt2. Increasing the number of amino acid residues that form hydrogen bond interactions in the QM layer showed significant impact in binding interaction energy differences and the stabilities of the carbapenems inside the active pocket of LdtMt2. The theoretical binding free energies obtained in this study reflect the same trend of the experimental  observations. The electrostatic, hydrogen bonding and Van der Waals interactions between the carbapenems and LdtMt2 were also assessed. To further examine the nature of intermolecular interactions for carbapenem-LdtMt2 complexes, AIM and NBO analysis were performed for the QM region (carbapenems and the active residues of LdtMt2) of the complexes. These analyses revealed that the hydrogen bond interactions and charge transfer from the bonding to anti-bonding orbitals between catalytic residues of the enzyme and selected ligands enhances the binding and stability of carbapenem-LdtMt2 complexes. The two-layered ONIOM (B3LYP/6-31+G(d): Amber) model was used to evaluate the efficacy of FDA approved carbapenems antibiotics towards LdtMt2.


Assuntos
Antibacterianos/química , Antituberculosos/química , Proteínas de Bactérias/química , Carbapenêmicos/química , Mycobacterium tuberculosis/enzimologia , Peptidil Transferases/química , Domínio Catalítico , Ligação de Hidrogênio , Peptidil Transferases/antagonistas & inibidores , Ligação Proteica , Conformação Proteica , Teoria Quântica , Estereoisomerismo , Termodinâmica
3.
Pharmaceutics ; 15(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242748

RESUMO

Due to their broad-spectrum activity against Gram-negative and Gram-positive bacteria, natural antimicrobial peptides (AMPs) and their synthetic analogs have emerged as prospective therapies for treating illnesses brought on by multi-drug resistant pathogens. To overcome the limitations of AMPs, such as protease degradation, oligo-N-substituted glycines (peptoids) are a promising alternative. Despite having the same backbone atom sequence as natural peptides, peptoid structures are more stable because, unlike AMP, their functional side chains are attached to the backbone nitrogen (N)-atom rather than the alpha carbon atom. As a result, peptoid structures are less susceptible to proteolysis and enzymatic degradation. The advantages of AMPs, such as hydrophobicity, cationic character, and amphipathicity, are mimicked by peptoids. Furthermore, structure-activity relationship studies (SAR) have shown that tuning the structure of peptoids is a crucial step in developing effective antimicrobials.

4.
ACS Omega ; 8(35): 31714-31724, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692209

RESUMO

Cationic chitosan derivatives have been widely studied as potential antimicrobial agents. However, very little is known about their antiviral activity and mode of action against enveloped viruses. We investigated the ability of hydroxypropanoic acid-grafted chitosan (HPA-CS) and N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) to inactivate enveloped viruses like the human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The membrane-disrupting potential of the chitosan derivatives was initially investigated in a hemolysis assay. At 1.0 mg/mL, about 80% hemolysis was observed for the cationic chitosan derivatives, which was significant when compared to almost no membrane-disrupting activity by the unmodified chitosan. Virus inhibition was evaluated using the luciferase-based antiviral assay against the HIV-1 NL4.3 virus (400 TCID). The IC50 of HPA-CS was 4.109 mg/mL, while the HTCC showed a higher antiviral activity at an IC50 = 0.225 mg/mL. For practical application, the antiviral efficacies of the HTCC-coated and uncoated nonmedical masks were evaluated for SARS- CoV-2 virus capture. The coated masks demonstrated an almost excellent performance with nearly 100% viral inhibition compared to less than 60% inhibition by the uncoated masks. Molecular docking predictions suggest that the HTCC polymers interact with the viral spike protein, blocking the coronavirus interaction with the target host cell's angiotensin-converting enzyme 2 cellular receptors.

5.
Future Med Chem ; 15(18): 1719-1738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37772542

RESUMO

There has been an increasing trend in the design of novel pyrazole derivatives for desired biological applications. For a cost-effective strategy, scientists have implemented various computational drug design tools to go hand in hand with experiments for the design and discovery of potentially effective pyrazole-based therapeutics. This review highlights the milestones of pyrazole-containing inhibitors and the use of molecular modeling techniques in conjunction with experimental studies to provide a view of the binding mechanism of these compounds. The review focuses on the established targets that play a key role in cancer therapy, including proteins involved in tubulin polymerization, carbonic anhydrase and tyrosine kinase. Overall, using both experimental and computational methods in drug design represents a promising approach to cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Modelos Moleculares , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirazóis/química , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
6.
ACS Infect Dis ; 9(3): 486-496, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36786013

RESUMO

ß-lactams are the most prescribed class of antibiotics due to their potent, broad-spectrum antimicrobial activities. However, alarming rates of antimicrobial resistance now threaten the clinical relevance of these drugs, especially for the carbapenem-resistant Enterobacterales expressing metallo-ß-lactamases (MBLs). Antimicrobial agents that specifically target these enzymes to restore the efficacy of last resort ß-lactam drugs, that is, carbapenems, are therefore desperately needed. Herein, we present a cyclic zinc chelator covalently attached to a ß-lactam scaffold (cephalosporin), that is, BP1. Observations from in vitro assays (with seven MBL expressing bacteria from different geographies) have indicated that BP1 restored the efficacy of meropenem to ≤ 0.5 mg/L, with sterilizing activity occurring from 8 h postinoculation. Furthermore, BP1 was nontoxic against human hepatocarcinoma cells (IC50 > 1000 mg/L) and exhibited a potency of (Kiapp) 24.8 and 97.4 µM against Verona integron-encoded MBL (VIM-2) and New Delhi metallo ß-lactamase (NDM-1), respectively. There was no inhibition observed from BP1 with the human zinc-containing enzyme glyoxylase II up to 500 µM. Preliminary molecular docking of BP1 with NDM-1 and VIM-2 sheds light on BP1's mode of action. In Klebsiella pneumoniae NDM infected mice, BP1 coadministered with meropenem was efficacious in reducing the bacterial load by >3 log10 units' postinfection. The findings herein propose a favorable therapeutic combination strategy that restores the activity of the carbapenem antibiotic class and complements the few MBL inhibitors under development, with the ultimate goal of curbing antimicrobial resistance.


Assuntos
Carbapenêmicos , Inibidores de beta-Lactamases , Animais , Humanos , Camundongos , Carbapenêmicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Meropeném/farmacologia , Lactamas , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Monobactamas , Zinco/farmacologia
7.
Antiviral Res ; 217: 105675, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481039

RESUMO

Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Domínios PDZ , Proteínas , Linfócitos T/metabolismo
8.
Antibiotics (Basel) ; 12(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106995

RESUMO

Virulent Enterobacterale strains expressing serine and metallo-ß-lactamases (MBL) genes have emerged responsible for conferring resistance to hard-to-treat infectious diseases. One strategy that exists is to develop ß-lactamase inhibitors to counter this resistance. Currently, serine ß-lactamase inhibitors (SBLIs) are in therapeutic use. However, an urgent global need for clinical metallo-ß-lactamase inhibitors (MBLIs) has become dire. To address this problem, this study evaluated BP2, a novel beta-lactam-derived ß-lactamase inhibitor, co-administered with meropenem. According to the antimicrobial susceptibility results, BP2 potentiates the synergistic activity of meropenem to a minimum inhibitory concentration (MIC) of ≤1 mg/L. In addition, BP2 is bactericidal over 24 h and safe to administer at the selected concentrations. Enzyme inhibition kinetics showed that BP2 had an apparent inhibitory constant (Kiapp) of 35.3 µM and 30.9 µM against New Delhi Metallo-ß-lactamase (NDM-1) and Verona Integron-encoded Metallo-ß-lactamase (VIM-2), respectively. BP2 did not interact with glyoxylase II enzyme up to 500 µM, indicating specific (MBL) binding. In a murine infection model, BP2 co-administered with meropenem was efficacious, observed by the >3 log10 reduction in K. pneumoniae NDM cfu/thigh. Given the promising pre-clinical results, BP2 is a suitable candidate for further research and development as an (MBLI).

9.
J Biomol Struct Dyn ; 40(17): 7645-7655, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33719919

RESUMO

Mycobacterium tuberculosis cell wall is intricate and impermeable to many agents. A D, D-carboxypeptidase (DacB1) is one of the enzymes involved in the biosynthesis of cell wall peptidoglycan and catalyzes the terminal D-alanine cleavage from pentapeptide precursors. Catalytic activity and mechanism by which DacB1 functions is poorly understood. Herein, we investigated the acylation mechanism of DacB1 by ß-lactams using a 6-membered ring transition state model that involves a catalytic water molecule in the reaction pathway. The full transition states (TS) optimization plus frequency were achieved using the ONIOM (B3LYP/6-31 + G(d): AMBER) method. Subsequently, the activation free energies were computed via single-point calculations on fully optimized structures using B3LYP/6-311++(d,p): AMBER and M06-2X/6-311++(d,p): AMBER with an electronic embedding scheme. The 6-membered ring transition state is an effective model to examine the inactivation of DacB1 via acylation by ß-lactams antibiotics (imipenem, meropenem, and faropenem) in the presence of the catalytic water. The ΔG# values obtained suggest that the nucleophilic attack on the carbonyl carbon is the rate-limiting step with 13.62, 19.60 and 30.29 kcal mol-1 for Imi-DacB1, Mero-DacB1 and Faro-DacB1, respectively. The electrostatic potential (ESP) and natural bond orbital (NBO) analysis provided significant electronic details of the electron-rich region and charge delocalization, respectively, based on the concerted 6-membered ring transition state. The stabilization energies of charge transfer within the catalytic reaction pathway concurred with the obtained activation free energies. The outcomes of this study provide important molecular insight into the inactivation of D, D-carboxypeptidase by ß-lactams.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Peptidil Transferases , Acilação , Alanina/farmacologia , Antibacterianos/farmacologia , Carbono , Carboxipeptidases/metabolismo , Imipenem/farmacologia , Meropeném/farmacologia , Monobactamas/farmacologia , Peptidoglicano/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Água , beta-Lactamas/química , beta-Lactamas/farmacologia
10.
Eur J Med Chem ; 224: 113705, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303871

RESUMO

Computer-aided drug design (CADD) is one of the pivotal approaches to contemporary pre-clinical drug discovery, and various computational techniques and software programs are typically used in combination, in a bid to achieve the desired outcome. Several approved drugs have been developed with the aid of CADD. On SciFinder®, we evaluated more than 600 publications through systematic searching and refining, using the terms, virtual screening; software methods; computational studies and publication year, in order to obtain data concerning particular aspects of CADD. The primary focus of this review was on the databases screened, virtual screening and/or molecular docking software program used. Furthermore, we evaluated the studies that subsequently performed molecular dynamics (MD) simulations and we reviewed the software programs applied, the application of density functional theory (DFT) calculations and experimental assays. To represent the latest trends, the most recent data obtained was between 2015 and 2020, consequently the most frequently employed techniques and software programs were recorded. Among these, the ZINC database was the most widely preferred with an average use of 31.2%. Structure-based virtual screening (SBVS) was the most prominently used type of virtual screening and it accounted for an average of 57.6%, with AutoDock being the preferred virtual screening/molecular docking program with 41.8% usage. Following the screening process, 38.5% of the studies performed MD simulations to complement the virtual screening and GROMACS with 39.3% usage, was the popular MD software program. Among the computational techniques, DFT was the least applied whereby it only accounts for 0.02% average use. An average of 36.5% of the studies included reports on experimental evaluations following virtual screening. Ultimately, since the inception and application of CADD in pre-clinical drug discovery, more than 70 approved drugs have been discovered, and this number is steadily increasing over time.


Assuntos
Teoria da Densidade Funcional , Descoberta de Drogas , Simulação de Acoplamento Molecular , Software , Avaliação Pré-Clínica de Medicamentos
11.
Curr Med Chem ; 27(19): 3250-3267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30501595

RESUMO

Peptidoglycan, the exoskeleton of bacterial cell and an essential barrier that protects the cell, is synthesized by a pathway where the final steps are catalysed by transpeptidases. Knowledge of the structure and function of these vital enzymes that generate this macromolecule in M. tuberculosis could facilitate the development of potent lead compounds against tuberculosis. This review summarizes the experimental and computational studies to date on these aspects of transpeptidases in M. tuberculosis that have been identified and validated. The reported structures of L,D- and D,D-transpeptidases, as well as their functionalities, are reviewed and the proposed enzymatic mechanisms for L,D-transpeptidases are summarized. In addition, we provide bioactivities of known tuberculosis drugs against these enzymes based on both experimental and computational approaches. Advancing knowledge about these prominent targets supports the development of new drugs with novel inhibition mechanisms overcoming the current need for new drugs against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias , Parede Celular , Peptidoglicano , Peptidil Transferases
12.
Tuberculosis (Edinb) ; 113: 222-230, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30514506

RESUMO

Mycobacterium tuberculosis is the causative agent of Tuberculosis. Formation of 3 → 3 crosslinks in the peptidoglycan layer of M. tuberculosis is catalyzed by l,d-transpeptidases. These enzymes can confer resistance against classical ß-lactams that inhibit enzymes that generate 4 → 3 peptidoglycan crosslinks. The focus of this study is to investigate the catalytic role of water molecules in the acylation mechanism of the ß-lactam ring within two models; 4- and 6-membered ring systems using two-layered our Own N-layer integrated Molecular Mechanics ONIOM (B3LYP/6-311++G(2d,2p): AMBER) model. The obtained thermochemical parameters revealed that the 6-membered ring model best describes the inhibition mechanism of acylation which indicates the role of water in the preference of 6-membered ring reaction pathway. This finding is in accordance with experimental data for the rate-limiting step of cysteine protease with the same class of inhibitor and binding affinity for both inhibitors. As expected, the ΔG# results also reveal that the 6-membered ring reaction pathway is the most favourable. The electrostatic potential (ESP) and the natural bond orbital analysis (NBO) showed stronger interactions in 6-membered ring transition state (TS-6) mechanism involving water in the active site of the enzyme. This study could be helpful in the development of novel antibiotics against l,d-transpeptidase.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Água/metabolismo , Acilação , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , Catálise , Domínio Catalítico , Imipenem/química , Imipenem/metabolismo , Imipenem/farmacologia , Cinética , Meropeném/química , Meropeném/metabolismo , Meropeném/farmacologia , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , Peptidil Transferases/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA