Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24290359

RESUMO

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Assuntos
Interação Gene-Ambiente , Mitocôndrias/efeitos dos fármacos , Paraquat/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição MEF2 , Mutação/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Nitrogênio/metabolismo , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
J Neurochem ; 133(6): 898-908, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25692407

RESUMO

Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2).


Assuntos
Abietanos/farmacologia , Lesões Encefálicas/prevenção & controle , Cianetos/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Bioterrorismo , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Cell Death Dis ; 7(12): e2499, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906174

RESUMO

Alzheimer's disease (AD) is characterized by synaptic and neuronal loss, which occurs at least partially through oxidative stress induced by oligomeric amyloid-ß (Aß)-peptide. Carnosic acid (CA), a chemical found in rosemary and sage, is a pro-electrophilic compound that is converted to its active form by oxidative stress. The active form stimulates the Keap1/Nrf2 transcriptional pathway and thus production of phase 2 antioxidant enzymes. We used both in vitro and in vivo models. For in vitro studies, we evaluated protective effects of CA on primary neurons exposed to oligomeric Aß. For in vivo studies, we used two transgenic mouse models of AD, human amyloid precursor protein (hAPP)-J20 mice and triple transgenic (3xTg AD) mice. We treated these mice trans-nasally with CA twice weekly for 3 months. Subsequently, we performed neurobehavioral tests and quantitative immunohistochemistry to assess effects on AD-related phenotypes, including learning and memory, and synaptic damage. In vitro, CA reduced dendritic spine loss in rat neurons exposed to oligomeric Aß. In vivo, CA treatment of hAPP-J20 mice improved learning and memory in the Morris water maze test. Histologically, CA increased dendritic and synaptic markers, and decreased astrogliosis, Aß plaque number, and phospho-tau staining in the hippocampus. We conclude that CA exhibits therapeutic benefits in rodent AD models and since the FDA has placed CA on the 'generally regarded as safe' (GRAS) list, thus obviating the need for safety studies, human clinical trials will be greatly expedited.


Assuntos
Abietanos/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Elementos de Resposta Antioxidante/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Abietanos/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Córtex Cerebral/patologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Humanos , Imuno-Histoquímica , Camundongos Transgênicos , Modelos Biológicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ratos , Aprendizagem Espacial/efeitos dos fármacos , Coloração e Rotulagem , Sinapses/metabolismo , Sinaptofisina/metabolismo
4.
J Comp Neurol ; 522(12): 2845-56, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24756727

RESUMO

Neural transplantation is a promising strategy for restoring dopaminergic dysfunction and modifying disease progression in Parkinson's disease (PD). Human embryonic stem cells (hESCs) are a potential resource in this regard because of their ability to provide a virtually limitless supply of homogenous dopaminergic progenitors and neurons of appropriate lineage. The recent advances in developing robust cell culture protocols for directed differentiation of hESCs to near pure populations of ventral mesencephalic (A9-type) dopaminergic neurons has heightened the prospects for PD cell therapy. Here, we focus our review on current state-of-the-art techniques for harnessing hESC-based strategies toward development of a stem cell therapeutic for PD. Importantly, we also briefly describe a novel genetic-programming approach that may address many of the key challenges that remain in the field and that may hasten clinical translation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Embrionárias/fisiologia , Células-Tronco Neurais/transplante , Doença de Parkinson/cirurgia , Animais , Diferenciação Celular , Humanos , Células-Tronco Neurais/fisiologia
5.
Cell Rep ; 8(1): 217-28, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25001280

RESUMO

Redox-mediated posttranslational modifications represent a molecular switch that controls major mechanisms of cell function. Nitric oxide (NO) can mediate redox reactions via S-nitrosylation, representing transfer of an NO group to a critical protein thiol. NO is known to modulate neurogenesis and neuronal survival in various brain regions in disparate neurodegenerative conditions. However, a unifying molecular mechanism linking these phenomena remains unknown. Here, we report that S-nitrosylation of myocyte enhancer factor 2 (MEF2) transcription factors acts as a redox switch to inhibit both neurogenesis and neuronal survival. Structure-based analysis reveals that MEF2 dimerization creates a pocket, facilitating S-nitrosylation at an evolutionally conserved cysteine residue in the DNA binding domain. S-Nitrosylation disrupts MEF2-DNA binding and transcriptional activity, leading to impaired neurogenesis and survival in vitro and in vivo. Our data define a molecular switch whereby redox-mediated posttranslational modification controls both neurogenesis and neurodegeneration via a single transcriptional signaling cascade.


Assuntos
Apoptose , Fatores de Transcrição MEF2/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Ativação Transcricional , Animais , Sítios de Ligação , Células Cultivadas , DNA/metabolismo , Células HEK293 , Humanos , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/genética , Camundongos , Células-Tronco Neurais/citologia , Oxirredução , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA