Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 14(3): 4580-95, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23443159

RESUMO

Oxidative stress is an imbalance between the production of free radicals and antioxidant defense mechanisms, potentially leading to tissue damage. Oxidative stress has a key role in the development of cerebrovascular and/or neurodegenerative diseases. This phenomenon is mainly mediated by an enhanced superoxide production by the vascular endothelium with its consequent dysfunction. Thioctic, also known as alpha-lipoic acid (1,2-dithiolane-3-pentanoic acid), is a naturally occurring antioxidant that neutralizes free radicals in the fatty and watery regions of cells. Both the reduced and oxidized forms of the compound possess antioxidant ability. Thioctic acid has two optical isomers designated as (+)- and (-)-thioctic acid. Naturally occurring thioctic acid is the (+)-thioctic acid form, but the synthetic compound largely used in the market for stability reasons is a mixture of (+)- and (-)-thioctic acid. The present study was designed to compare the antioxidant activity of the two enantiomers versus the racemic form of thioctic acid on hydrogen peroxide-induced apoptosis in a rat pheochromocytoma PC12 cell line. Cell viability was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and free oxygen radical species (ROS) production was assessed by flow cytometry. Antioxidant activity of the two enantiomers and the racemic form of thioctic acid was also evaluated in spontaneously hypertensive rats (SHR) used as an in vivo model of increased oxidative stress. A 3-h exposure of PC12 cells to hydrogen peroxide (H(2)O(2)) significantly decreased cell viability and increased levels of intracellular ROS production. Pre-treatment with racemic thioctic acid or (+)-enantiomer significantly inhibited H(2)O(2)-induced decrease in cell viability from the concentration of 50 µmol/L and 20 µmol/L, respectively. Racemic thioctic acid and (+)-salt decreased levels of intracellular ROS, which were unaffected by (-)-thioctic acid. In the brain of SHR, the occurrence of astrogliosis and neuronal damage, with a decreased expression of neurofilament 200 kDa were observed. Treatment of SHR for 30 days with (+)-thioctic acid reduced the size of astrocytes and increased the neurofilament immunoreaction. The above findings could contribute to clarify the role played by thioctic acid in central nervous system injury related to oxidative stress. The more pronounced effect of (+)-thioctic acid observed in this study may have practical therapeutic implications worthy of being investigated in further preclinical and clinical studies.

2.
Biomed Res Int ; 2013: 985093, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24527432

RESUMO

Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (-)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/-)-, (+)-, or (-)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/-)- or (-)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ácido Tióctico/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Endogâmicos SHR , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA