Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(24): e2122389119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666875

RESUMO

Childhood growth faltering remains unacceptably high in sub-Saharan Africa. Rural communities dependent on household food production with limited off-farm income or liquid assets to bridge seasonal food availability are especially vulnerable. A cross-sectional survey in Siaya County, Kenya identified 23.5 and 4.8% of children under 5 y of age as stunted and wasted, respectively, using height-for-age Z (HAZ) scores to detect stunting and weight-for-height Z (WHZ) scores for wasting. Although these households are classified as living in poverty or extreme poverty with very limited off-farm income, households commonly have on-farm resources that could be developed to improve nutrition. While 95% of these households have chickens and consumption of eggs was shown to increase childhood growth by an average of 5%, the average flock size is small and constrained by high mortality due to infectious disease. We hypothesized that interventions to relieve this constraint would translate into household decisions influencing the diets and growth of children. Here, we show that vaccination of chickens against Newcastle disease has a causal impact on children's consumption of animal source foods rich in protein and micronutrients relative to a high-carbohydrate, grain-based diet. Children in treatment households (chicken vaccination) showed overall increases in scores for both HAZ and WHZ relative to control households, benefiting both girls and boys. The findings demonstrate the impact of directing interventions at common on-farm assets managed by women in rural communities and support programs to enhance productivity at the household level.


Assuntos
Galinhas , Dieta , Transtornos do Crescimento , Estado Nutricional , Vacinação , Animais , Desenvolvimento Infantil , Pré-Escolar , Tomada de Decisões , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/prevenção & controle , Humanos , Lactente , Quênia/epidemiologia , População Rural , Vacinação/veterinária
2.
Emerg Infect Dis ; 26(12): 3007-3010, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219788

RESUMO

Previously identified only in Sierra Leone, Guinea, and southeastern Kenya, Bombali virus-infected Mops condylurus bats were recently found ¼750 km away in western Kenya. This finding supports the role of M. condylurus bats as hosts and the potential for Bombali virus circulation across the bats' range in sub-Saharan Africa.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Animais , Guiné , Quênia/epidemiologia , Serra Leoa
3.
Trop Anim Health Prod ; 46(4): 603-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24414247

RESUMO

Immunization together with application of biosecurity measures are the principal methods of preventing infectious bursal disease outbreaks in high-risk areas. However, outbreaks in vaccinated chicken flocks have been reported in many parts of the world as a result of factors of vaccine virus, animal, or vaccine handler. In Kenya, such outbreaks have been reported, but the causes have not been studied. This study aimed at determining the risk factors associated with vaccine handling leading to vaccine failure in broiler flocks in Kwale County, Kenya. Structured questionnaires and visual observations were used to collect data from 83 broiler farms, 6 breeding farms, and 17 vaccine outlets. Relative risk (RR) analysis was used to determine the association between identified potential risk factors and vaccination failure. Results show that vaccines were properly handled in all vaccine outlet shops. Breeding farms maintained high levels of biosecurity and employed standard vaccine handling practices. Basic biosecurity practices were poor in broiler farms. Broiler farms failed to meet all the recommended standard procedures for vaccine storage, reconstitution, and administration. Risk factors included poor vaccine storage (RR = 8.7) and use of few drinkers to administer vaccine (RR = 5.8); traces of disinfectants in drinkers used to administer live vaccine (RR = 2.8); use of wrong vaccine-infectious bronchitis instead of infectious bursal disease vaccine (RR = 2.1); and use of improper diluents (RR = 1.6). Broiler farmers need training on basic farm biosecurity measures and standard vaccine handling practices.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas , Vírus da Doença Infecciosa da Bursa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais , Criação de Animais Domésticos/normas , Animais , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/prevenção & controle , Surtos de Doenças/veterinária , Esquemas de Imunização , Quênia/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Fatores de Risco , Vacinação/veterinária , Vacinas Atenuadas , Vacinas Virais/administração & dosagem , Vacinas Virais/normas
4.
Vet Med Int ; 2022: 5437171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855868

RESUMO

Food borne diseases are one of the major human disease conditions worldwide. Most of them are of bacterial origin and chickens are a major source of such bacteria; they are consumed at high rate worldwide and tend to harbor the zoonotic bacteria without showing signs of illness. Running rain water tends to increase environmental contamination, since it carries various substances from one area to another; this results in village-indigenous chickens picking more bacteria from the environment as they roam/scavenge around for food. Thus, after the rain, the chickens' intestinal contents may contain more bacteria quantity-wise and type-wise. This study was carried-out to determine whether that was the case after heavy rains of 2018.120 intestine samples were collected from indigenous chickens from three slaughterhouses in Nairobi for bacterial quantification using the Miles and Misra technique; bacterial isolation and identification were carried out using standard bacteriological procedures. Intestines from the slaughterhouses had different mean bacterial counts: Kangemi had the highest (1.3 × 1012 colony-forming units per ml), followed by Burma (5.6 × 1011), then Kariokor (4.7 × 1011). E. coli was the most isolated at 85.8%, followed by genera Staphylococcus (55%), Streptococcus (43.3%), Bacillus (41.66%), Listeria (38.3%), Proteus (24.16%), Klebsiella (7.5%), Campylobacter (2.5%), Pseudomonas (6%), and Streptobacillus (0.83%). The study showed that the indigenous chickens carry a variety of bacteria in types and numbers, some of them being zoonotic. Apart from picking more bacteria as a result of environmental contamination during rainy season, the weather and bird-handling further stress the birds, thus contributing to higher bacterial multiplication and higher bacterial carriage. If slaughter is not done right, these intestinal bacteria can easily cause contamination of respective chicken meat; thus, if pathogenic, it can cause food poisoning to consumers of the meat. Therefore, it is recommended that precaution be taken while slaughtering chickens for consumption. In addition, where possible, free-range indigenous chickens be confined during rainy seasons to reduce their exposure to contaminated environment.

5.
J Parasitol Res ; 2021: 9956256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350033

RESUMO

Canine nematodes pose a public health risk to humans and livestock; however, the prevalence of canine nematodiases in Rwanda is unknown. This study aimed at determining the prevalence of canine nematodiases and identifying the risk factors for such infections in Kigali, the capital city of Rwanda. A cross-sectional study involved 93 dogs selected across Kigali city. Faecal samples were collected from apparently healthy dogs, and nematode eggs were identified and quantified using the McMaster technique. Risk factors for canine nematodiases were analysed by a multivariable binary logistic regression model. The overall prevalence of gastrointestinal (GI) nematodiases in dogs was 33.3% (95% CI: 23.8-42.9). The most prevalent species was Ancylostoma spp with 32.3% (95% CI: 22.8-41.8). Nearly 38.7% and 3.2% of the dogs infected with Ancylostoma spp and Toxocara canis had high egg counts per gram (EPG) of faeces (≥550), respectively. Approximately 96.8% of dogs infected with nematodes had monoinfection. Logistic regression analysis showed that dog's age (1 to 2.5 years old), location (Gasabo and Kicukiro districts), and feeding practices were significantly associated with prevalence of canine nematodiases. In particular, the adjusted odds ratio (AOR) was more than 5 times higher for dogs fed on uncooked animal products and leftovers from households and restaurants compared to those who ate food prepared for them. The AOR was also about 16 times higher for dogs that scavenged and ate leftovers from households compared to those who ate food prepared for them. The findings of this study indicate that the prevalence of GI nematodes in domestic dogs in Kigali city, Rwanda, was 33.3% (95% CI: 23.8-42.9). The identified nematodes, namely, Ancylostoma spp. and Toxocara canis, are zoonotic, and dogs and humans are at risk of contracting these nematodes. The factors associated with canine GI nematodes in Kigali city include feeding practices and the dog's age and location (district). Dog owners need to rethink procedures for deworming and feeding their dogs. Again, the public should be made aware of the role of dogs in transmitting zoonotic nematodes to humans.

6.
Vector Borne Zoonotic Dis ; 21(12): 973-978, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958268

RESUMO

Rodents are known reservoir hosts for a number of pathogens that can spillover into humans and cause disease. These threats are likely to be elevated in informal urban settlements (i.e., slums), where rodent and human densities are often high, rodents live in close proximity to humans, and human knowledge of disease risks and access to health care is often limited. While recent research attention has focused on zoonotic risks posed by urban rodents in major cities around the world, informal urban settlements have received far less attention. Here we report on a study in which samples were collected from 195 commensal rodents and 124 febrile human patients in the Kibera informal settlement in Nairobi, Kenya (one of the largest informal urban settlements in the world). Using immunofluorescence assays, samples were screened for antibodies against common rodent-borne zoonotic virus groups, namely orthopoxviruses, arenaviruses, and hantaviruses. We detected antibodies against orthopoxviruses in rodents (4.1% positive) and antibodies in humans against orthopoxviruses, arenaviruses, and hantaviruses (4.8%, 3.2%, and 8.1% positive, respectively). No rodents had antibodies against arenaviruses or hantaviruses. These results provide strong evidence for the circulation of zoonotic viruses in rodents and humans in Kibera urban settlement, but discordance between viruses detected in host groups indicates that other species or taxa may also serve as reservoirs for these zoonotic viruses or that humans testing positive could have been exposed outside of the Kibera settlement. More broadly, this study highlights the threat posed by zoonotic viruses in informal urban settlements and the need to mitigate human exposure risks.


Assuntos
Orthohantavírus , Vírus , Animais , Humanos , Quênia/epidemiologia , Áreas de Pobreza , Roedores
7.
PLoS One ; 16(3): e0248596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735266

RESUMO

BACKGROUND: Poultry represent a widely held economic, nutritional, and sociocultural asset in rural communities worldwide. In a recent longitudinal study in western Kenya, the reported mean number of chickens per household was 10, with increases in flock size constrained principally by mortality. Newcastle disease virus is a major cause of chicken mortality globally and hypothesized to be responsible for a large part of mortality in smallholder flocks. Our goal was to determine the impact of routine Newcastle disease virus (NDV) vaccination on flock size and use this data to guide programs to improve small flock productivity. METHODS: We conducted a factorial randomized controlled trial in 537 households: in 254 households all chickens were vaccinated every 3 months with I-2 NDV vaccine while chickens in 283 households served as unvaccinated controls. In both arms of the trial, all chickens were treated with endo- and ecto parasiticides every 3 months. Data on household chicken numbers and reported gains and losses were collected monthly for 18 months. RESULTS: Consistent with prior studies, the overall flock size was small but with increases in both arms of the study over time. The mean number of chickens owned at monthly census was 13.06±0.29 in the vaccinated households versus 12.06±0.20 in the control households (p = 0.0026) with significant gains in number of chicks (p = 0.06), growers (p = 0.09), and adults (p = 0.03) in the vaccinated flocks versus the controls. Household reported gains were 4.50±0.12 total chickens per month when vaccinated versus 4.15±0.11 in the non-vaccinated controls (p = 0.03). Gains were balanced by voluntary decreases, reflecting household decision-making for sales or household consumption, which were marginally higher, but not statistically significant, in vaccinated households and by involuntary losses, including mortality and loss due to predation, which were marginally higher in control households. CONCLUSION: Quarterly NDV vaccination and parasiticidal treatment resulted in an increase in flock size by a mean of one bird per household as compared to households where the flock received only parasiticidal treatment. While results suggest that the preventable fraction of mortality attributable to Newcastle disease is comparatively small relatively to all-cause mortality in smallholder households, there was a significant benefit to vaccination in terms of flock size. Comparison with previous flock sizes in the study households indicate a more significant benefit from the combined vaccination and parasiticidal treatment, supporting a comprehensive approach to improving flock health and improving household benefits of production in the smallholder setting.


Assuntos
Galinhas/imunologia , Fazendas/estatística & dados numéricos , Doença de Newcastle/prevenção & controle , Vacinação/veterinária , Vacinas Virais/administração & dosagem , Animais , Galinhas/virologia , Quênia , Doença de Newcastle/imunologia , Doença de Newcastle/mortalidade , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/imunologia , Vacinação/estatística & dados numéricos
8.
PLoS One ; 15(5): e0233691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470070

RESUMO

BACKGROUND: Chickens are a widely held economic and nutritional asset in rural Africa and are frequently managed by women. Despite potential benefits of larger flock sizes, the average number of chickens kept at the household level is reported to be low. Whether this reflects decision-making to maximize benefits per unit labor by voluntary reduction of chicken numbers by consumption or sale versus involuntary losses due to mortality is a significant gap in knowledge relevant to improving smallholder household welfare. METHODS: In a 4-year longitudinal study of 1,908 smallholder households in rural western Kenya, the number of chickens owned by quarterly census at each household was determined. Households reported gains and losses of chicken over the immediate previous quarter. Gains were classified as on-farm or off-farm; losses were classified as voluntary (sales, gifts, consumption) or involuntary (mortality, unclassified loss). RESULTS: The mean number of chickens owned over the 16 quarters was 10, consistent with prior cross-sectional data. Involuntary losses represented 70% of total off-take, while voluntary off-take represented the remaining 30%. Mortality composed 60% of total reported off-take and accounted for most of the involuntary losses. Household consumption, sales, and gifts represented 18%, 9%, and 3% of off-take, respectively. CONCLUSION: The overwhelming majority of off-take can be classified as involuntary off-take, principally due to mortality, that does not reflect the owner's decision to maximize value through nutritional gain, income, or social capital. This strongly suggests that there is substantial opportunity to enhance the value of chickens as an asset, both nutritional and income generating, for smallholder households living at poverty level. Our findings suggest that programs emphasizing community level poultry vaccination and feed supplementation are much more likely to be effective than those solely focused on providing chickens.


Assuntos
Fazendeiros , Renda , Mortalidade , Estado Nutricional , Aves Domésticas , Pobreza/economia , População Rural , Animais , Galinhas , Estudos Transversais , Fazendas/economia , Humanos , Quênia/epidemiologia , Estudos Longitudinais , Masculino
9.
Int J Microbiol ; 2020: 8897338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802077

RESUMO

Fish bacterial pathogens cause diseases which result in a considerable economic impact on the aquaculture industry, necessitating the use of antimicrobials for their control. However, intensive and indiscriminate use of antimicrobials has led to increased occurrence of drug resistance in pathogenic bacteria, as well as normal flora. The aim of the current study was to determine the susceptibility patterns of bacteria isolated from fish, with respect to some commonly used antibiotics and disinfectants. Bacteria were isolated between December 2017 and April 2018 from farmed Nile tilapia, African catfish, goldfish, and koi carp in Kirinyaga County, Kenya. Antibiotic and disinfectant susceptibility patterns of 48 isolates belonging to the genera Aeromonas, Proteus, Klebsiella, Citrobacter, Salmonella, Streptococcus, Pseudomonas, Escherichia, Serratia, and Micrococcus were established using the Kirby-Bauer disc diffusion method and agar well diffusion technique, respectively. The antibiotics evaluated included ampicillin, tetracycline, co-trimoxazole, streptomycin, kanamycin, gentamicin, co-trimoxazole, and chloramphenicol, while the disinfectants tested were quaternary ammonium compound, formalin, hydrogen peroxide, sodium hypochlorite, and iodine. All the bacteria except Micrococcus, Escherichia, and Salmonella species showed multiple drug resistance patterns. Streptococcus showed resistance to six antibiotics, while Proteus, Pseudomonas, and Serratia were resistant to five antibiotics. The multiple antibiotic resistance index ranged from 0.1 to 0.8, with Streptococcus spp. having the highest score value. All the organisms were sensitive to gentamicin, while co-trimoxazole and ampicillin showed the highest resistance at 73% (n = 34) and 62% (n = 31), respectively. Most of the disinfectants showed antibacterial activity with varying magnitudes. The isolates were 100% sensitive to hydrogen peroxide and formalin, but were resistant to sodium hypochlorite at recommended user-dilution. The study has shown that some of the bacterial isolates were resistant to common antibiotics and disinfectants; thus, it is recommended to include an antibiogram whenever making any therapeutic decision. The resistant bacteria may transmit resistance genes to other fish bacteria and also to human bacteria, thus making it difficult to treat the resultant disease(s); thus, there is a possibility that these resistant bacteria may be transmitted to humans who consume or handle the carrier fish. It is, therefore, advisable that fish are cooked properly before consumption, so as to kill bacteria that may be present.

10.
Vet Med Int ; 2020: 6839354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257096

RESUMO

Fish mortality has an enormous impact on the aquaculture industry by reducing fish production and slowing industrial growth. A cross-sectional study was carried out in Kirinyaga County, Central Kenya, to evaluate potential risks of fish mortality and disease transmission and suitability of pond water for rearing fish. A semistructured questionnaire that focused on general information, management practices, and disease history was administered to 92 small-scale fish farmers. Parasitological examination of fish sampled from selected farms (farms that were reporting mortality at the time of sampling) was done by following the standard procedure. Water quality parameters for 33 ponds were evaluated in situ (recorded on pond site) and ex situ (analysed at the laboratory) following the standard methods. The risks were assessed by adjusted odds ratio based on univariate regression analysis. Prevalent fish husbandry practices that were found to be associated with fish mortality and acquisition of pathogens in the study area were the use of raw livestock manure (0R = 1.500), high fish stocking density (0R = 1.168), and feeding fish on homemade rations (0R = 1.128). Parasitological investigation found infestation with Diplostomum spp., Dactylogyrus spp., Clinostomum spp., and Piscicola leeches. Water temperature and pH were found fit for rearing fish. Of the 33 fishpond water samples tested, 1 (3%) and 6 (18%) exceeded the recommended limits of <100 mg/L and <0.2 mg/L of nitrate and nitrite, respectively. Of the 29 fishpond water tested, 15 (59%) exceeded the recommended limits of <100 mg/L of total ammonia. The findings show that the use of raw livestock manure, high fish stocking density, high nitrates and nitrites, and high ammonia levels in fishponds are potential risk factors for fish mortality and acquisition of infectious pathogens in a pond environment in a rural setup, in Central Kenya. There is a need to address the above factors in small-scale farming practices to minimize fish loss and also to prevent the occurrence and spread of infectious pathogens.

11.
PLoS One ; 13(2): e0192721, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29425232

RESUMO

BACKGROUND: Influenza A virus subtypes in non-human hosts have not been characterized in Kenya. We carried out influenza surveillance in selected domestic animals and compared the virus isolates with isolates obtained in humans during the same period. METHODS: We collected nasal swabs from pigs, dogs and cats; oropharyngeal and cloacal swabs from poultry; and blood samples from all animals between 2010 and 2012. A standardized questionnaire was administered to farmers and traders. Swabs were tested for influenza A by rtRT-PCR, virus isolation and subtyping was done on all positive swabs. All sera were screened for influenza A antibodies by ELISA, and positives were evaluated by hemagglutination inhibition (HI). Full genome sequencing was done on four selected pig virus isolates. RESULTS: Among 3,798 sera tested by ELISA, influenza A seroprevalence was highest in pigs (15.9%; 172/1084), 1.2% (3/258) in ducks, 1.4% (1/72) in cats 0.6% (3/467) in dogs, 0.1% (2/1894) in chicken and 0% in geese and turkeys. HI testing of ELISA-positive pig sera showed that 71.5% had positive titers to A/California/04/2009(H1N1). Among 6,289 swabs tested by rRT-PCR, influenza A prevalence was highest in ducks [1.2%; 5/423] and 0% in cats and turkeys. Eight virus isolates were obtained from pig nasal swabs collected in 2011 and were determined to be A(H1N1)pdm09 on subtyping. On phylogenetic analysis, four hemagglutinin segments from pig isolates clustered together and were closely associated with human influenza viruses that circulated in Kenya in 2011. CONCLUSION: Influenza A(H1N1)pdm09 isolated in pigs was genetically similar to contemporary human pandemic influenza virus isolates. This suggest that the virus was likely transmitted from humans to pigs, became established and circulated in Kenyan pig populations during the study period. Minimal influenza A prevalence was observed in the other animals studied.


Assuntos
Animais Domésticos/virologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Infecções por Orthomyxoviridae/virologia , Animais , Ensaio de Imunoadsorção Enzimática , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Quênia , Cavidade Nasal/virologia , Infecções por Orthomyxoviridae/transmissão , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA