Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1736, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720963

RESUMO

A process for the production of tens to hundreds of GBq amounts of zirconium-88 (88Zr) using proton beams on yttrium was developed. For this purpose, yttrium metal targets (≈20 g) were irradiated in a ~16 to 34 MeV proton beam at a beam current of 100-200 µA at the Los Alamos Isotope Production Facility (IPF). The 88Zr radionuclide was produced and separated from the yttrium targets using hydroxamate resin with an elution yield of 94(5)% (1σ). Liquid DCl solution in D2O was selected as a suitable 88Zr sample matrix due to the high neutron transmission of deuterium compared to hydrogen and an even distribution of 88Zr in the sample matrix. The separated 88Zr was dissolved in DCl and 8 µL of the obtained solution was transferred to a tungsten sample can with a 1.2 mm diameter hole using a syringe and automated filling station inside a hot cell. Neutron transmission of the obtained 88Zr sample was measured at the Device for Indirect Capture Experiments on Radionuclides (DICER).

2.
Nat Chem ; 13(3): 284-289, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33318671

RESUMO

Developing targeted α-therapies has the potential to transform how diseases are treated. In these interventions, targeting vectors are labelled with α-emitting radioisotopes that deliver destructive radiation discretely to diseased cells while simultaneously sparing the surrounding healthy tissue. Widespread implementation requires advances in non-invasive imaging technologies that rapidly assay therapeutics. Towards this end, positron emission tomography (PET) imaging has emerged as one of the most informative diagnostic techniques. Unfortunately, many promising α-emitting isotopes such as 225Ac and 227Th are incompatible with PET imaging. Here we overcame this obstacle by developing large-scale (Ci-scale) production and purification methods for 134Ce. Subsequent radiolabelling and in vivo PET imaging experiments in a small animal model demonstrated that 134Ce (and its 134La daughter) could be used as a PET imaging candidate for 225AcIII (with reduced 134CeIII) or 227ThIV (with oxidized 134CeIV). Evaluating these data alongside X-ray absorption spectroscopy results demonstrated how success relied on rigorously controlling the CeIII/CeIV redox couple.


Assuntos
Cério/química , Lantânio/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Abdome/diagnóstico por imagem , Animais , Radioisótopos de Cério/química , Oxirredução , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA