Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; : e17506, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161118

RESUMO

The Ornithodoros moubata (Om) soft tick, a vector for diseases like tick-borne human relapsing fever and African swine fever, poses challenges to conventional control methods. With diminishing insecticide efficacy, harnessing the tick's microbiota through innovative approaches like microbiota-driven vaccination emerges as a promising strategy for sustainable and targeted disease control. This study investigated the intricate relationship between Pseudomonas, a keystone taxon in the Om microbiome, and its impact on tick fitness, microbiome structure and network dynamics. Utilizing in silico analyses and empirical vaccination experiments, the role of Pseudomonas within microbial networks in the tick midguts (MG) and salivary glands (SG) of Om was studied. Additionally, the consequences of anti-microbiota vaccines targeting Pseudomonas and Lactobacillus on tick fitness, microbiome diversity and community assembly were explored. The result of the study shows that in Om, Pseudomonas plays a central role in microbial networks, influencing keystone species despite being categorized as peripheral (interacting with 47 different taxa, 13 of which are keystone species). Anti-microbiota vaccination targeting Pseudomonas and Lactobacillus yields distinct effects on tick fitness, with Pseudomonas vaccination significantly impacting female tick survival, while Lactobacillus significantly reduced oviposition and fertility. Microbiome changes post-vaccination reveal diversity alterations, emphasizing the impact of vaccine choice. Community assembly dynamics and network robustness analyses highlight Pseudomonas' pivotal role, in influencing topological features and network resilience. The findings of the study provide comprehensive insights into the intricate dynamics of Om microbial networks and the potential of targeted microbiota-driven vaccines for tick control.

2.
Int Microbiol ; 27(4): 1205-1218, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38151633

RESUMO

CONTEXT: Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community. METHODS: Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly. RESULTS: Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs. CONCLUSIONS: Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.


Assuntos
Anaplasma phagocytophilum , Ixodes , Microbiota , RNA Ribossômico 16S , Anaplasma phagocytophilum/fisiologia , Anaplasma phagocytophilum/genética , Animais , Ixodes/microbiologia , RNA Ribossômico 16S/genética , Ehrlichiose/microbiologia , Ninfa/microbiologia , Microbioma Gastrointestinal/fisiologia
3.
Travel Med Infect Dis ; 58: 102697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369074

RESUMO

BACKGROUND: Rabies remains a deadly zoonotic disease, primarily prevalent in Eastern European countries, with a significant global burden in Asia and Africa. Post-exposure prophylaxis (PEP) is critical to prevent clinical rabies. Serbia, a country with a relatively low animal rabies incidence, has been implementing a 4-dose Essen PEP regimen for 13 years. This real-world study aimed to assess the effectiveness of the 4-dose Essen regimen, considering demographic and clinical factors, after WHO Category III exposure. METHOD: The study included 601 patients who received the 4-dose Essen PEP and 79 who received an additional 5th dose. RESULTS: Age emerged as a critical factor influencing seroconversion rates after the 4-dose regimen, with older individuals exhibiting lower RVNA titers. Logistic regression indicated a 3.18% decrease in seroconversion odds for each added year of age. The Cox proportional hazards mixed model highlighted age-related risks, with age groups 45-60 and 75-92 at the highest risk of non-seroconversion. Human Rabies Immune Globulin (HRIG) administration was associated with lower RVNA values after the 4-dose regimen, suggesting interference with vaccine immunogenicity among people who received larger doses of HRIG. CONCLUSIONS: This study provides valuable real-world evidence for rabies PEP in a non-homogeneous population with potential comorbidities. The results underscore the importance of optimizing PEP strategies, particularly in older individuals, and reconsidering HRIG dosing to improve seroconversion rates.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Humanos , Idoso , Raiva/epidemiologia , Raiva/prevenção & controle , Profilaxia Pós-Exposição , Sérvia/epidemiologia , Anticorpos Antivirais
4.
Heliyon ; 10(4): e26118, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375245

RESUMO

In recent decades, tick-borne diseases (TBDs) have surged and expanded globally due to factors like changes in human activities, land use patterns, and climate change, and it have been associated with the emergence of zoonotic diseases. Cuba faces the impact of ticks on human health and the economy. Although Cuba has studied TBDs extensively for the past 50 years, focus on tick-borne viral pathogens affecting humans remains scant. Despite TBDs not currently being a major health concern in Cuba, factors like inadequate clinician awareness, climate conditions, global tick emergence, and evidence of zoonotic pathogens in ticks underscore the importance of enhanced TBD surveillance in the country. Here we revised the available information on ticks as vectors of pathogenic viruses to humans, spotlighting bats as potential reservoirs of tick-borne viruses (TBVs). Ticks on bats have gained interest as potential reservoirs of pathogenic viruses to humans in Cuba and worldwide. Understanding their role in maintaining viruses and their potential transmission to humans is crucial for the implementation of surveillance and control programs to reduce the risk of tick-borne viral diseases and public health management.

5.
Pathogens ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276164

RESUMO

Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.

6.
Ecol Evol ; 14(4): e11228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571811

RESUMO

Interactions within the tick microbiome involving symbionts, commensals, and tick-borne pathogens (TBPs) play a pivotal role in disease ecology. This study explored temporal changes in the microbiome of Rhipicephalus microplus, an important cattle tick vector, focusing on its interaction with Anaplasma marginale. To overcome limitations inherent in sampling methods relying on questing ticks, which may not consistently reflect pathogen presence due to variations in exposure to infected hosts in nature, our study focused on ticks fed on chronically infected cattle. This approach ensures continuous pathogen exposure, providing a more comprehensive understanding of the nesting patterns of A. marginale in the R. microplus microbiome. Using next-generation sequencing, microbiome dynamics were characterized over 2 years, revealing significant shifts in diversity, composition, and abundance. Anaplasma marginale exhibited varying associations, with its increased abundance correlating with reduced microbial diversity. Co-occurrence networks demonstrated Anaplasma's evolving role, transitioning from diverse connections to keystone taxa status. An integrative approach involving in silico node removal unveils the impact of Anaplasma on network stability, highlighting its role in conferring robustness to the microbial community. This study provides insights into the intricate interplay between the tick microbiome and A. marginale, shedding light on potential avenues for controlling bovine anaplasmosis through microbiome manipulation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38765730

RESUMO

Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using published Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and network robustness, crucial for colonization resistance. We examined network robustness by altering its connectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial diversity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon node addition hints that infection with A. phagocytophilum might lower ticks' resistance to colonization, potentially facilitating further microbial invasions. We conclude that the compromised colonization resistance observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick populations.

8.
Microbiol Res ; 286: 127790, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851009

RESUMO

Understanding the intricate ecological interactions within the microbiome of arthropod vectors is crucial for elucidating disease transmission dynamics and developing effective control strategies. In this study, we investigated the ecological roles of Coxiella-like endosymbiont (CLE) and Anaplasma marginale across larval, nymphal, and adult stages of Rhipicephalus microplus. We hypothesized that CLE would show a stable, nested pattern reflecting co-evolution with the tick host, while A. marginale would exhibit a more dynamic, non-nested pattern influenced by environmental factors and host immune responses. Our findings revealed a stable, nested pattern characteristic of co-evolutionary mutualism for CLE, occurring in all developmental stages of the tick. Conversely, A. marginale exhibited variable occurrence but exerted significant influence on microbial community structure, challenging our initial hypotheses of its non-nested dynamics. Furthermore, in silico removal of both microbes from the co-occurrence networks altered network topology, underscoring their central roles in the R. microplus microbiome. Notably, competitive interactions between CLE and A. marginale were observed in nymphal network, potentially reflecting the impact of CLE on the pathogen transstadial-transmission. These findings shed light on the complex ecological dynamics within tick microbiomes and have implications for disease management strategies.


Assuntos
Anaplasma marginale , Coxiella , Larva , Rhipicephalus , Simbiose , Animais , Rhipicephalus/microbiologia , Coxiella/genética , Larva/microbiologia , Larva/crescimento & desenvolvimento , Microbiota , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento
9.
Parasit Vectors ; 17(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178247

RESUMO

BACKGROUND: Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS: A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS: The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS: Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.


Assuntos
Doenças do Cão , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Humanos , Animais , Cães , Filogenia , Estudos Transversais , Microfluídica , Anaplasma/genética , Ehrlichia canis/genética , Rhipicephalus sanguineus/microbiologia , Reação em Cadeia da Polimerase , Doenças do Cão/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
10.
Rev. bras. parasitol. vet ; 24(4): 438-446, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-770308

RESUMO

Abstract The present study reports the genetic diversity of Anaplasma marginale during anaplasmosis outbreaks in rural properties of the states of Goiás and São Paulo, Brazil. Mortality rates of 3.5% (37/1,050) in calves, 4.7% (45/954) in heifers and 1.1% (25/2,200) in lactating cows were observed in a cattle herd of the municipality of Mambaí, state of Goiás, central-western Brazil. In a cattle herd from the municipality of Lins, state of São Paulo, in southeastern Brazil, none of the animals died, despite presenting clinical signs suggestive of bovine anaplasmosis and exhibiting a drastic decrease in milk production. Thus, blood samples were collected from 100 animals with clinical signs suggestive of bovine anaplasmosis in the municipalities of Mambaí and Lins. Based on the microsatellite structure of the MSP1a of A. marginale, the genotypes E and H were observed in Lins, and the C, D and E genotypes were found in Mambaí. The analysis of the tandem repeat structures of the MSP1a showed nine different strains (τ-10 -15, α-β2, α-β3-13, α-β2 192, τ-β-100, α-β2-Γ, 193-β-100, 191-13-Γ and 191-13-18) in Lins and two (α-β3-Γ and E-F-φ2-F2) in Mambaí. Three new tandem repeats of MSP1a (191, 192 and 193) were described. The τ-10-15 and α-β3-Γ strains were predominantly associated with the occurrence of clinical anaplasmosis and mortality in calves, heifers and lactating cows.


Resumo O presente estudo relata a diversidade genética de Anaplasma marginale durante surtos de anaplasmose bovina no Brasil em propriedades localizadas nos Estados de Goiás e São Paulo. No rebanho bovino de Mambaí, Estado de Goiás, Centro-oeste do Brasil, observaram-se taxas de mortalidade de 3,5% (37/1050) nos bezerros; 4,7% (45/954) nas novilhas e 1,1% (25/2200) nas vacas em lactação. No rebanho bovino de Lins, Estado de São Paulo, Sudeste do Brasil, embora os animais tenham apresentado sinais clínicos sugestivos de anaplasmose bovina, culminando em redução drástica da produção leiteira, nenhum animal veio a óbito. Assim, amostras de sangue de 100 bovinos com sinais clínicos sugestivos de anaplasmose foram coletadas em Mambaí-GO e Lins-SP. Baseando-se na estrutura do microssatélite da MSP1a de A. marginale, observou-se a presença dos genótipos E e H em Lins e C, D e E em Mambaí. A análise da estrutura em “tandem repeats” da MSP1a mostrou nove diferentes estirpes (τ-10 -15, α-β2, α-β3-13, α-β2 192, τ-β-100, α-β2-Γ, 193-β-100, 191-13-Γ e 191-13-18) em Lins e duas (α-β3-Γ e E-F-φ2-F2) em Mambaí. Três novos “tandem repeats” da MSP1a (191, 192 e 193) foram descritos. Foi observado predomínio das estirpes τ-10-15 e α-β3-Γ associado à ocorrência de anaplasmose clínica e mortalidade em bezerras, novilhas e vacas em lactação.


Assuntos
Animais , Feminino , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Anaplasma marginale/classificação , Anaplasmose/epidemiologia , Filogenia , Especificidade da Espécie , Brasil/epidemiologia , Lactação , Doenças dos Bovinos/parasitologia , Anaplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA