Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 15(1): 173, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866139

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal outcome of Plasmodium infection. There are clear correlations between expression of inflammatory cytokines, severe coagulopathies, and mortality in human CM. However, the mechanisms intertwining the coagulation and inflammation pathways, and their roles in CM, are only beginning to be understood. In mice with T cells deficient in the regulatory cytokine IL-10 (IL-10 KO), infection with Plasmodium chabaudi leads to a hyper-inflammatory response and lethal outcome that can be prevented by anti-TNF treatment. However, inflammatory T cells are adherent within the vasculature and not present in the brain parenchyma, suggesting a novel form of cerebral inflammation. We have previously documented behavioral dysfunction and microglial activation in infected IL-10 KO animals suggestive of neurological involvement driven by inflammation. In order to understand the relationship of intravascular inflammation to parenchymal dysfunction, we studied the congestion of vessels with leukocytes and fibrin(ogen) and the relationship of glial cell activation to congested vessels in the brains of P. chabaudi-infected IL-10 KO mice. METHODS: Using immunofluorescence microscopy, we describe severe thrombotic congestion in these animals. We stained for immune cell surface markers (CD45, CD11b, CD4), fibrin(ogen), microglia (Iba-1), and astrocytes (GFAP) in the brain at the peak of behavioral symptoms. Finally, we investigated the roles of inflammatory cytokine tumor necrosis factor (TNF) and coagulation on the pathology observed using neutralizing antibodies and low-molecular weight heparin to inhibit both inflammation and coagulation, respectively. RESULTS: Many blood vessels in the brain were congested with thrombi containing adherent leukocytes, including CD4 T cells and monocytes. Despite containment of the pathogen and leukocytes within the vasculature, activated microglia and astrocytes were prevalent in the parenchyma, particularly clustered near vessels with thrombi. Neutralization of TNF, or the coagulation cascade, significantly reduced both thrombus formation and gliosis in P. chabaudi-infected IL-10 KO mice. CONCLUSIONS: These findings support the contribution of cytokines, coagulation, and leukocytes within the brain vasculature to neuropathology in malaria infection. Strikingly, localization of inflammatory leukocytes within intravascular clots suggests a mechanism for interaction between the two cascades by which cytokines drive local inflammation without considerable cellular infiltration into the brain parenchyma.


Assuntos
Citocinas/metabolismo , Gliose/etiologia , Gliose/prevenção & controle , Malária Cerebral/complicações , Vasculite do Sistema Nervoso Central/etiologia , Amônia/sangue , Animais , Anticorpos/uso terapêutico , Anticoagulantes/uso terapêutico , Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Heparina/uso terapêutico , Interleucina-10/genética , Interleucina-10/metabolismo , Leucócitos/patologia , Fígado/metabolismo , Fígado/patologia , Malária Cerebral/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmodium chabaudi/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vasculite do Sistema Nervoso Central/tratamento farmacológico , Vasculite do Sistema Nervoso Central/parasitologia
2.
Malar J ; 15(1): 428, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557867

RESUMO

BACKGROUND: Cerebral malaria is one of the most severe complications of Plasmodium falciparum infection and occurs mostly in young African children. This syndrome results from a combination of high levels of parasitaemia and inflammation. Although parasite sequestration in the brain is a feature of the human syndrome, sequestering strains do not uniformly cause severe malaria, suggesting interplay with other factors. Host genetic factors such as mutations in the promoters of the cytokines IL-10 and TNF are also clearly linked to severe disease. Plasmodium chabaudi, a rodent malaria parasite, leads to mild illness in wildtype animals. However, IL-10(-/-) mice respond to parasite with increased levels of pro-inflammatory cytokines IFN-γ and TNF, leading to lethal disease in the absence of sequestration in the brain. These mice also exhibit cerebral symptoms including gross cerebral oedema and haemorrhage, allowing study of these critical features of disease without the influence of sequestration. METHODS: The neurological consequences of P. chabaudi infection were investigated by performing a general behavioural screen (SHIRPA). The immune cell populations found in the brain during infection were also analysed using flow cytometry and confocal microscopy. RESULTS: IL-10(-/-) mice suffer significant declines in behavioural and physical capacities during infection compared to wildtype. In addition, grip strength and pain sensitivity were affected, suggestive of neurological involvement. Several immune cell populations were identified in the perfused brain on day 7 post-infection, suggesting that they are tightly adherent to the vascular endothelium, or potentially located within the brain parenchyma. There was an increase in both inflammatory monocyte and resident macrophage (CD11b(hi), CD45(+), MHCII(+), Ly6C(+/-)) numbers in IL-10(-/-) compared to wildtype animals. In addition, the activation state of all monocytes and microglia (CD11b(int), CD45(-), MHC-II(+)) were increased. T cells making IFN-γ were also identified in the brain, but were localized within the vasculature, and not the parenchyma. CONCLUSIONS: These studies demonstrate exacerbated neuroinflammation concurrent with development of behavioural symptoms in P. chabaudi infection of IL-10(-/-) animals.


Assuntos
Comportamento Animal , Inflamação/patologia , Interleucina-10/deficiência , Malária Cerebral/complicações , Malária Cerebral/patologia , Transtornos Mentais/etiologia , Plasmodium chabaudi/crescimento & desenvolvimento , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Leucócitos/imunologia , Malária Cerebral/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal
3.
MethodsX ; 10: 102198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152666

RESUMO

Computed Tomography (CT) is a standard clinical tool utilized to diagnose known lung pathologies based on established grading methods. However, for preclinical trials and toxicity investigations in animal models, more comprehensive datasets are typically needed to determine discriminative features between experimental treatments, which oftentimes require analysis of multiple images and their associated differential quantification using manual segmentation methods. Furthermore, for manual segmentation of image data, three or more readers is the gold standard of analysis, but this requirement can be time-consuming and inefficient, depending on variability due to reader bias. In previous papers, microCT image manual segmentation was a valuable tool for assessment of lung pathology in several animal models; however, the manual segmentation approach and the commercial software used was typically a major rate-limiting step. To improve the efficiency, the semi-manual segmentation method was streamlined, and a semi-automated segmentation process was developed to produce:•Quantifiable segmentations: using manual and semi-automated analysis methods for assessing experimental injury and toxicity models,•Deterministic results and efficiency through automation in an unbiased and parameter free process, thereby reducing reader variance, user time, and increases throughput in data analysis,•Cost-Effectiveness: portable with low computational resource demand, based on a cross-platform open-source ImageJ program.

4.
EC Ophthalmol ; 12(11): 23-31, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108311

RESUMO

Purpose: Optic nerve degeneration is a feature of neurodegenerative eye diseases and causes irreversible vision loss. Therefore, understanding the degenerating patterns of the optic nerve is critical to find the potential therapeutic target for optic neuropathy. However, the traditional method of optic nerve degeneration has the limitations of losing spatiotemporal tissue information. Light sheet fluorescence microscopy (LSFM) is a fluorescence microscopy technique that allows capturing 3D images rapidly with a high spatial optical resolution. In this study, we evaluated the availability of LSFM on the optic nerve with NMDA injected Thy1-CFP mice. Methods: NMDA injected to both eyes of Thy1-CFP mice. After 7 days from the injection, the retina and optic nerve were collected and immunostained with anti-Iba1 antibody. NMDA excitotoxicity induced RGC, and its axon loss and microglial activation in the retina were observed using confocal microscopy. The immunostained optic nerve was completed the optical clearing process with TDE and mounted for LSFM imaging. Results: We found that retinal flatmounts confirmed significant loss of CFP-expressing RGC and axon degradation and loss in Thy1-CFP mice at 7 days after NMDA injection. Together with these data verifying that NMDA induces RGC and its axon loss, we confirmed that NMDA excitotoxicity induced microglia activation and leukostasis, such as increased microglia number, transform its morphology to ameboid or round, and increase in attached leukocytes in vessels. Using LSFM, we observed that CFP expressing nerve fiber was well organized and arranged parallel in vehicle treated optic nerve, whileas NMDA injected optic nerve showed axon swelling and fragmentation and loss of axon density from the anterior to the posterior regions. Furthermore, LSFM enabled the observation of microglia phenotype transformation in the entire optic nerve. Unlike microglia in vehicle injected optic nerve, microglia in NMDA injected optic nerve displayed larger soma and short process with high Iba1 expression through the entire optic nerve from the anterior to posterior. Conclusions: In summary, we examined the applicability of the modified optic clearing protocol for the optic nerve and verified it enabled to acquiring of the 3D images of the optic nerve successfully revealing the complex spatial relationships between the axons, microglia and vasculature throughout the entire organ with single acquisitions. With these optimized techniques, we successfully obtained the high-resolution 3D images of NMDA-induced optic neuropathy, including the clues for optic nerve degeneration such as axon swelling, axonal fragmentation, and microglia activation. Overall, we believe that our current study could help understand the pathology of the optic nerve in neurodegenerative diseases, and it will be the basis for translational research.

5.
Sci Rep ; 8(1): 13348, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190498

RESUMO

Pulmonary fibrosis, characterized by excessive collagen deposition in the lungs, comprises a key and debilitating component of chronic lung diseases. Methods are lacking for the direct visualization of fibrillar collagen throughout the whole murine lung, a capability that would aid the understanding of lung fibrosis. We combined an optimized organ-level optical clearing (OC) approach with large-scale, label-free multiphoton microscopy (MPM) and second harmonic generation microscopy (SHGM) to reveal the complete network of fibrillar collagen in whole murine lungs. An innate inflammation-driven model based on repetitive poly(I:C) challenge was evaluated. Following OC, mosaic MPM/SHGM imaging with 3D reconstruction and whole organ quantitative analysis revealed significant differences in collagen deposition between PBS and poly(I:C) treated lungs. Airway specific analysis in whole lung acquisitions revealed significant sub-epithelial fibrosis evident throughout the proximal conductive and distal airways with higher collagen deposition in the poly(I:C) group vs PBS group. This study establishes a new, powerful approach based on OC and MPM/SHGM imaging for 3D analysis of lung fibrosis with macroscopic views of lung pathology based on microscopy and providing a new way to analyze the whole lung while avoiding regional sampling bias.


Assuntos
Matriz Extracelular/patologia , Imageamento Tridimensional , Pulmão/patologia , Fibrose Pulmonar/patologia , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Poli I-C/efeitos adversos , Poli I-C/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA