Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 641, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245523

RESUMO

In recent years, large-scale tree mortality events linked to global change have occurred around the world. Current forest monitoring methods are crucial for identifying mortality hotspots, but systematic assessments of isolated or scattered dead trees over large areas are needed to reduce uncertainty on the actual extent of tree mortality. Here, we mapped individual dead trees in California using sub-meter resolution aerial photographs from 2020 and deep learning-based dead tree detection. We identified 91.4 million dead trees over 27.8 million hectares of vegetated areas (16.7-24.7% underestimation bias when compared to field data). Among these, a total of 19.5 million dead trees appeared isolated, and 60% of all dead trees occurred in small groups ( ≤ 3 dead trees within a 30 × 30 m grid), which is largely undetected by other state-level monitoring methods. The widespread mortality of individual trees impacts the carbon budget and sequestration capacity of California forests and can be considered a threat to forest health and a fuel source for future wildfires.


Assuntos
Árvores , Incêndios Florestais , Florestas , California , Carbono
2.
PNAS Nexus ; 2(4): pgad076, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37065619

RESUMO

Sustainable tree resource management is the key to mitigating climate warming, fostering a green economy, and protecting valuable habitats. Detailed knowledge about tree resources is a prerequisite for such management but is conventionally based on plot-scale data, which often neglects trees outside forests. Here, we present a deep learning-based framework that provides location, crown area, and height for individual overstory trees from aerial images at country scale. We apply the framework on data covering Denmark and show that large trees (stem diameter >10 cm) can be identified with a low bias (12.5%) and that trees outside forests contribute to 30% of the total tree cover, which is typically unrecognized in national inventories. The bias is high (46.6%) when our results are evaluated against all trees taller than 1.3 m, which involve undetectable small or understory trees. Furthermore, we demonstrate that only marginal effort is needed to transfer our framework to data from Finland, despite markedly dissimilar data sources. Our work lays the foundation for digitalized national databases, where large trees are spatially traceable and manageable.

3.
Nat Commun ; 14(1): 2258, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130845

RESUMO

The consistent monitoring of trees both inside and outside of forests is key to sustainable land management. Current monitoring systems either ignore trees outside forests or are too expensive to be applied consistently across countries on a repeated basis. Here we use the PlanetScope nanosatellite constellation, which delivers global very high-resolution daily imagery, to map both forest and non-forest tree cover for continental Africa using images from a single year. Our prototype map of 2019 (RMSE = 9.57%, bias = -6.9%). demonstrates that a precise assessment of all tree-based ecosystems is possible at continental scale, and reveals that 29% of tree cover is found outside areas previously classified as tree cover in state-of-the-art maps, such as in croplands and grassland. Such accurate mapping of tree cover down to the level of individual trees and consistent among countries has the potential to redefine land use impacts in non-forest landscapes, move beyond the need for forest definitions, and build the basis for natural climate solutions and tree-related studies.


Assuntos
Ecossistema , Florestas , Clima , África
4.
EPJ Data Sci ; 10(1): 44, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34426779

RESUMO

The use of various learning apps in school settings is growing and thus producing an increasing amount of usage generated data. However, this usage generated data has only to a very little extend been used for monitoring and promoting learning progress. We test if application usage generated data from a reading app holds potential for measuring reading ability, reading speed progress and for pointing out features in a school setting that promotes learning. We analyze new data from three different sources: (1) Usage generated data from a widely used reading app, (2) Data from a national reading ability test, and (3) Register data on student background and family characteristics. First, we find that reading app generated data to some degree tells the same story about reading ability as does the formal national reading ability test. Second, we find that the reading app data has the potential to monitor reading speed progress. Finally, we tested several models including machine learning models. Two of these were able to identify variables associated with reading speed progress with some degree of success and to point at certain conditions that promotes reading speed progress. We discuss the results and avenues for further research are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA