Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33318128

RESUMO

The sodium pump (Na+, K+-ATPase, NKA) is vital for animal cells, as it actively maintains Na+ and K+ electrochemical gradients across the cell membrane. It is a target of cardiotonic steroids (CTSs) such as ouabain and digoxin. As CTSs are almost unique strong inhibitors specific to NKA, a wide range of derivatives has been developed for potential therapeutic use. Several crystal structures have been published for NKA-CTS complexes, but they fail to explain the largely different inhibitory properties of the various CTSs. For instance, although CTSs are thought to inhibit ATPase activity by binding to NKA in the E2P state, we do not know if large conformational changes accompany binding, as no crystal structure is available for the E2P state free of CTS. Here, we describe crystal structures of the BeF3- complex of NKA representing the E2P ground state and then eight crystal structures of seven CTSs, including rostafuroxin and istaroxime, two new members under clinical trials, in complex with NKA in the E2P state. The conformations of NKA are virtually identical in all complexes with and without CTSs, showing that CTSs bind to a preformed cavity in NKA. By comparing the inhibitory potency of the CTSs measured under four different conditions, we elucidate how different structural features of the CTSs result in different inhibitory properties. The crystal structures also explain K+-antagonism and suggest a route to isoform specific CTSs.


Assuntos
Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Animais , Fenômenos Biofísicos , Digoxina/farmacologia , Modelos Moleculares , Conformação Molecular , Ouabaína/farmacologia , Isoformas de Proteínas , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(31): 18448-18458, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675243

RESUMO

Under physiological conditions, most Ca2+-ATPase (SERCA) molecules bind ATP before binding the Ca2+ transported. SERCA has a high affinity for ATP even in the absence of Ca2+, and ATP accelerates Ca2+ binding at pH values lower than 7, where SERCA is in the E2 state with low-affinity Ca2+-binding sites. Here we describe the crystal structure of SERCA2a, the isoform predominant in cardiac muscle, in the E2·ATP state at 3.0-Å resolution. In the crystal structure, the arrangement of the cytoplasmic domains is distinctly different from that in canonical E2. The A-domain now takes an E1 position, and the N-domain occupies exactly the same position as that in the E1·ATP·2Ca2+ state relative to the P-domain. As a result, ATP is properly delivered to the phosphorylation site. Yet phosphoryl transfer never takes place without the filling of the two transmembrane Ca2+-binding sites. The present crystal structure explains what ATP binding itself does to SERCA and how nonproductive phosphorylation is prevented in E2.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cristalografia por Raios X , Humanos , Miocárdio/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446027

RESUMO

This study aimed to elucidate the vasodilatory effects and cytotoxicity of various vasodilators used as antispasmodic agents during microsurgical anastomosis. Rat smooth muscle cells (RSMCs) and human coronary artery endothelial cells (HCAECs) were used to investigate the physiological concentrations and cytotoxicity of various vasodilators (lidocaine, papaverine, nitroglycerin, phentolamine, and orciprenaline). Using a wire myograph system, we determined the vasodilatory effects of each drug in rat abdominal aortic sections at the concentration resulting in maximal vasodilation as well as at the surrounding concentrations 10 min after administration. Maximal vasodilation effect 10 min after administration was achieved at the following concentrations: lidocaine, 35 mM; papaverine, 0.18 mM; nitroglycerin, 0.022 mM; phentolamine, 0.11 mM; olprinone, 0.004 mM. The IC50 for lidocaine, papaverine, and nitroglycerin was measured in rat abdominal aortic sections, as well as in RSMCs after 30 min and in HCAECs after 10 min. Phentolamine and olprinone showed no cytotoxicity towards RSMCs or HCAECs. The concentrations of the various drugs required to achieve vasodilation were lower than the reported clinical concentrations. Lidocaine, papaverine, and nitroglycerin showed cytotoxicity, even at lower concentrations than those reported clinically. Phentolamine and olprinone show antispasmodic effects without cytotoxicity, making them useful candidates for local administration as antispasmodics.


Assuntos
Papaverina , Parassimpatolíticos , Humanos , Ratos , Animais , Parassimpatolíticos/farmacologia , Papaverina/farmacologia , Nitroglicerina/farmacologia , Fentolamina/farmacologia , Células Endoteliais , Microcirurgia , Músculo Liso Vascular , Vasodilatadores/farmacologia , Vasodilatação , Miócitos de Músculo Liso , Lidocaína/farmacologia
4.
J Muscle Res Cell Motil ; 42(2): 291-304, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32040690

RESUMO

Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation-contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático , Cálcio/metabolismo , Sinalização do Cálcio , Microscopia Crioeletrônica , Acoplamento Excitação-Contração , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(50): 12722-12727, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30482857

RESUMO

Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) pumps two Ca2+ per ATP hydrolyzed from the cytoplasm and two or three protons in the opposite direction. In the E2 state, after transferring Ca2+ into the lumen of sarcoplasmic reticulum, all of the acidic residues that coordinate Ca2+ are thought to be protonated, including the gating residue Glu309. Therefore a Glu309Gln substitution is not expected to significantly perturb the structure. Here we report crystal structures of the Glu309Gln and Glu309Ala mutants of SERCA1a under E2 conditions. The Glu309Gln mutant exhibits, unexpectedly, large structural rearrangements in both the cytoplasmic and transmembrane domains, apparently uncoupling them. However, the structure definitely represents E2 and, together with the help of quantum chemical calculations, allows us to postulate a mechanism for the E2 → E1 transition triggered by deprotonation of Glu309.


Assuntos
Cálcio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Trifosfato de Adenosina/química , Cristalografia por Raios X , Citoplasma/química , Hidrólise , Domínios Proteicos , Prótons , Retículo Sarcoplasmático/química
6.
J Electrocardiol ; 69: 111-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34656916

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic syndrome and a cause of exercise-related sudden death. CPVT has been reported to be caused by gain of function underlying a mutation of cardiac ryanodine receptor (RyR2). METHODS: In a family with a CPVT patient, genomic DNA was extracted from peripheral blood lymphocytes, and the RyR2 gene underwent target gene sequence using MiSeq. The activity of wild-type (WT) and mutant RyR2 channel were evaluated by monitoring Ca2+ signals in HEK293 cells expressing WT and mutant RyR2. We investigated a role of a RyR2 mutation in the recent tertiary structure of RyR2. RESULTS: Though a 17-year-old man diagnosed as CPVT had implantable cardioverter defibrillator (ICD) and was going to undergo catheter ablation for the control of paroxysmal atrial fibrillation, he suddenly died at the age of twenty-one because of ventricular fibrillation which was spontaneously developed after maximum inappropriate ICD shocks against rapid atrial fibrillation. The genetic test revealed a de novo RyR2 mutation, Gln4936Lys in mosaicism which was located at the α-helix interface between U-motif and C-terminal domain. In the functional analysis, Ca2+ release from endoplasmic reticulum via the mutant RyR2 significantly increased than that from WT. CONCLUSION: A RyR2 mutation, Gln4936Lys, to be documented in a CPVT patient with exercise-induced ventricular tachycardias causes an excessive Ca2+ release from the sarcoplasmic reticulum which corresponded to clinical phenotypes of CPVT. The reduction of inappropriate shocks of ICD is essential to prevent unexpected sudden death in patients with CPVT.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Adolescente , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Células HEK293 , Humanos , Masculino , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia
7.
J Reconstr Microsurg ; 37(6): 541-550, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33517569

RESUMO

BACKGROUND: Intraoperative vasospasm during reconstructive microvascular surgery is often unpredictable and may lead to devastating flap loss. Therefore, various vasodilators are used in reconstructive microsurgery to prevent and relieve vasospasm. Lidocaine is a vasodilator commonly used in microvascular surgery. Although many reports have described its in vitro and in vivo concentration-dependent vasodilatory effects, limited studies have examined the pharmacological effects of lidocaine on blood vessels in terms of persistence and titer. METHODS: In this study, the vasodilatory effect of lidocaine was examined by using the wire myograph system. Abdominal aortas were harvested from female rats, sliced into rings of 1-mm thickness, and mounted in the wire myograph system. Next, 10, 5, 2, and 1% lidocaine solutions were applied to the artery, and the change in vasodilation force, persistence of the force, and time required to reach equilibrium were measured. RESULTS: The vasodilatory effect was confirmed in all groups following lidocaine treatment. Although strong vasodilation was observed in the 10% lidocaine group, it was accompanied by irreversible degeneration of the artery. Vasodilation in the 1% lidocaine group was weaker than that in the other groups 500 seconds after lidocaine addition (p < 0.05). Between the 5 and 2% lidocaine groups, 5% lidocaine showed a stronger vasodilatory effect 400 to 600 seconds after lidocaine addition (p < 0.01); however, there was no significant difference in these groups after 700 seconds. Additionally, there was no difference in the time required for the relaxation force to reach equilibrium among the 5, 2, and 1% lidocaine groups. CONCLUSION: Although our study confirmed the dose-dependent vasodilatory effect of lidocaine, 5% lidocaine showed the best vasodilatory effect and continuity with minimal irreversible changes in the arterial tissue.


Assuntos
Microcirurgia , Vasodilatadores , Animais , Feminino , Lidocaína/farmacologia , Miografia , Ratos , Vasoconstrição , Vasodilatação , Vasodilatadores/farmacologia
8.
Nature ; 502(7470): 201-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24089211

RESUMO

Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail.


Assuntos
Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Rim/enzimologia , Estrutura Terciária de Proteína , Suínos
9.
Nature ; 495(7440): 260-4, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23455422

RESUMO

P-type ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes, and are distinct from other ATPases in that the reaction cycle includes an autophosphorylation step. The best studied is Ca(2+)-ATPase from muscle sarcoplasmic reticulum (SERCA1a), a Ca(2+) pump that relaxes muscle cells after contraction, and crystal structures have been determined for most of the reaction intermediates. An important outstanding structure is that of the E1 intermediate, which has empty high-affinity Ca(2+)-binding sites ready to accept new cytosolic Ca(2+). In the absence of Ca(2+) and at pH 7 or higher, the ATPase is predominantly in E1, not in E2 (low affinity for Ca(2+)), and if millimolar Mg(2+) is present, one Mg(2+) is expected to occupy one of the Ca(2+)-binding sites with a millimolar dissociation constant. This Mg(2+) accelerates the reaction cycle, not permitting phosphorylation without Ca(2+) binding. Here we describe the crystal structure of native SERCA1a (from rabbit) in this E1·Mg(2+) state at 3.0 Å resolution in addition to crystal structures of SERCA1a in E2 free from exogenous inhibitors, and address the structural basis of the activation signal for phosphoryl transfer. Unexpectedly, sarcolipin, a small regulatory membrane protein of Ca(2+)-ATPase, is bound, stabilizing the E1·Mg(2+) state. Sarcolipin is a close homologue of phospholamban, which is a critical mediator of ß-adrenergic signal in Ca(2+) regulation in heart (for reviews, see, for example, refs 8-10), and seems to play an important role in muscle-based thermogenesis. We also determined the crystal structure of recombinant SERCA1a devoid of sarcolipin, and describe the structural basis of inhibition by sarcolipin/phospholamban. Thus, the crystal structures reported here fill a gap in the structural elucidation of the reaction cycle and provide a solid basis for understanding the physiological regulation of the calcium pump.


Assuntos
Magnésio/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/farmacologia , Membrana Celular/metabolismo , Cristalografia por Raios X , Magnésio/química , Magnésio/farmacologia , Modelos Moleculares , Proteínas Musculares/farmacologia , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteolipídeos/farmacologia , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
10.
Mol Pharmacol ; 94(1): 722-730, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29674523

RESUMO

Genetic mutations in ryanodine receptors (RyRs), Ca2+-release channels in the sarcoplasmic reticulum essential for muscle contractions, cause various skeletal muscle and cardiac diseases. Because the main underlying mechanism of the pathogenesis is overactive Ca2+ release by gain-of-function of the RyR channel, inhibition of RyRs is expected to be a promising treatment of these diseases. Here, to identify inhibitors specific to skeletal muscle type 1 RyR (RyR1), we developed a novel high-throughput screening (HTS) platform using time-lapse fluorescence measurement of Ca2+ concentrations in the endoplasmic reticulum (ER) ([Ca2+]ER). Because expression of RyR1 carrying disease-associated mutation reduces [Ca2+]ER in HEK293 cells through Ca2+ leakage from RyR1 channels, specific drugs that inhibit RyR1 will increase [Ca2+]ER by preventing such Ca2+ leakage. RyR1 carrying the R2163C mutation and R-CEPIA1er, a genetically encoded ER Ca2+ indicator, were stably expressed in HEK293 cells, and time-lapse fluorescence was measured using a fluorometer. False positives were effectively excluded by using cells expressing wild-type (WT) RyR1. By screening 1535 compounds in a library of well characterized drugs, we successfully identified four compounds that significantly increased [Ca2+]ER They include dantrolene, a known RyR1 inhibitor, and three structurally different compounds: oxolinic acid, 9-aminoacridine, and alexidine. All the hit compounds, except for oxolinic acid, inhibited [3H]ryanodine binding of WT and mutant RyR1. Interestingly, they showed different dose dependencies and isoform specificities. The highly quantitative nature and good correlation with the channel activity validated this HTS platform by [Ca2+]ER measurement to explore drugs for RyR-related diseases.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Dantroleno/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mutação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
11.
Bioorg Med Chem Lett ; 28(3): 298-301, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292225

RESUMO

Biselyngbyaside, an 18-membered macrolide glycoside from marine cyanobacteria, and its derivatives are known to be sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors. Recently, a SERCA orthologue of the malaria parasite, PfATP6, has attracted attention as a malarial drug target. To provide a novel drug lead, we designed new synthetic analogs of biselyngbyolide B, the aglycone of biselyngbyaside, based on the co-crystal structure of SERCA with biselyngbyolide B, and synthesized them using the established synthetic route for biselyngbyolide B. Their biological activities against malarial parasites were evaluated.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Cianobactérias/química , Desenho de Fármacos , Macrolídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , ATPases Transportadoras de Cálcio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Macrolídeos/síntese química , Macrolídeos/química , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
12.
Hum Mutat ; 37(11): 1231-1241, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27586648

RESUMO

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.


Assuntos
Cálcio/metabolismo , Hipertermia Maligna/genética , Mutação , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Endoplasmático/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipertermia Maligna/metabolismo , Modelos Moleculares , Miopatia da Parte Central/metabolismo , Estrutura Secundária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo
13.
J Biol Chem ; 290(8): 4829-4842, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25533463

RESUMO

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Fosfatidilserinas/química , Fosfolipídeos/química , Fosfoproteínas/química , ATPase Trocadora de Sódio-Potássio/química , Colesterol/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Biochim Biophys Acta ; 1852(10 Pt A): 2042-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26170059

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic disorder in which multiple genes are aberrantly spliced. Sarco/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) is one of these genes, and it encodes a P-type ATPase. SERCA1 transports Ca(2+) from the cytosol to the lumen, and is involved in muscular relaxation. It has two splice variants (SERCA1a and SERCA1b) that differ in the last eight amino acids, and the contribution of these variants to DM1 pathology is unclear. Here, we show that SERCA1b protein is highly expressed in DM1 muscle tissue, mainly localised at fast twitch fibres. Additionally, when SERCA1a and SERCA1b were overexpressed in cells, we found that the ATPase and Ca(2+) uptake activity of SERCA1a was almost double that of SERCA1b. Although the affinity for both ATP and Ca(2+) was similar between the two variants, SERCA1b was more sensitive to the inner microsomal environment. Thus, we hypothesise that aberrant expression of SERCA1b in DM1 patients is the cause of abnormal intracellular Ca(2+) homeostasis.

15.
Nature ; 459(7245): 446-50, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19458722

RESUMO

Sodium-potassium ATPase is an ATP-powered ion pump that establishes concentration gradients for Na(+) and K(+) ions across the plasma membrane in all animal cells by pumping Na(+) from the cytoplasm and K(+) from the extracellular medium. Such gradients are used in many essential processes, notably for generating action potentials. Na(+), K(+)-ATPase is a member of the P-type ATPases, which include sarcoplasmic reticulum Ca(2+)-ATPase and gastric H(+), K(+)-ATPase, among others, and is the target of cardiac glycosides. Here we describe a crystal structure of this important ion pump, from shark rectal glands, consisting of alpha- and beta-subunits and a regulatory FXYD protein, all of which are highly homologous to human ones. The ATPase was fixed in a state analogous to E2.2K(+).P(i), in which the ATPase has a high affinity for K(+) and still binds P(i), as in the first crystal structure of pig kidney enzyme at 3.5 A resolution. Clearly visualized now at 2.4 A resolution are coordination of K(+) and associated water molecules in the transmembrane binding sites and a phosphate analogue (MgF(4)(2-)) in the phosphorylation site. The crystal structure shows that the beta-subunit has a critical role in K(+) binding (although its involvement has previously been suggested) and explains, at least partially, why the homologous Ca(2+)-ATPase counter-transports H(+) rather than K(+), despite the coordinating residues being almost identical.


Assuntos
ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cristalografia por Raios X , Fluoretos/metabolismo , Humanos , Compostos de Magnésio/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Potássio/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Glândula de Sal/enzimologia , Tubarões , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
16.
FEBS J ; 291(10): 2273-2286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437249

RESUMO

Atrial natriuretic peptide (ANP) plays a central role in the regulation of blood pressure and volume. ANP activities are mediated by natriuretic peptide receptor-A (NPR-A), a single-pass transmembrane receptor harboring intrinsic guanylate cyclase activity. This study investigated the mechanism underlying NPR-A-dependent hormone recognition through the determination of the crystal structures of the NPR-A extracellular hormone-binding domain complexed with full-length ANP, truncated mutants of ANP, and dendroaspis natriuretic peptide (DNP) isolated from the venom of the green Mamba snake, Dendroaspis angusticeps. The bound peptides possessed pseudo-two-fold symmetry, despite the lack of two-fold symmetry in the primary sequences, which enabled the tight coupling of the peptide to the receptor, and evidently contributes to guanylyl cyclase activity. The binding of DNP to the NPR-A was essentially identical to that of ANP; however, the affinity of DNP for NPR-A was higher than that of ANP owing to the additional interactions between distinctive sequences in the DNP and NPR-A. Consequently, our findings provide valuable insights that can be applied to the development of novel agonists for the treatment of various human diseases.


Assuntos
Fator Natriurético Atrial , Receptores do Fator Natriurético Atrial , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/genética , Fator Natriurético Atrial/química , Fator Natriurético Atrial/metabolismo , Fator Natriurético Atrial/genética , Animais , Humanos , Ligação Proteica , Cristalografia por Raios X , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Venenos Elapídicos/genética , Sequência de Aminoácidos , Modelos Moleculares , Guanilato Ciclase/metabolismo , Guanilato Ciclase/química , Guanilato Ciclase/genética , Peptídeos Natriuréticos/química , Peptídeos Natriuréticos/metabolismo , Peptídeos Natriuréticos/genética , Sítios de Ligação
17.
ACS Med Chem Lett ; 15(2): 287-293, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352840

RESUMO

Understanding the transport and inhibition mechanisms of substrates by P-glycoprotein (P-gp) is one of the important approaches in addressing multidrug resistance (MDR). In this study, we evaluated a variety of rhodamine derivatives as potential P-gp inhibitors targeting CmABCB1, a P-gp homologue, with a focus on their ATPase activity. Notably, a Q-rhodamine derivative with an o,o'-dimethoxybenzyl ester moiety (RhQ-DMB) demonstrated superior affinity and inhibitory activity, which was further confirmed by a drug susceptibility assay in yeast strains expressing CmABCB1. Results from a tryptophan fluorescence quenching experiment using a CmABCB1 mutant suggested that RhQ-DMB effectively enters and binds to the inner chamber of CmABCB1. These findings underscore the promising potential of RhQ-DMB as a tool for future studies aimed at elucidating the substrate-bound state of CmABCB1.

18.
J Biol Chem ; 287(51): 42826-34, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23132865

RESUMO

The high-affinity choline transporter CHT1 mediates choline uptake essential for acetylcholine synthesis in cholinergic nerve terminals. CHT1 belongs to the Na(+)/glucose cotransporter family (SLC5), which is postulated to have a common 13-transmembrane domain core; however, no direct experimental evidence for CHT1 transmembrane topology has yet been reported. We examined the transmembrane topology of human CHT1 using cysteine-scanning analysis. Single cysteine residues were introduced into the putative extra- and intracellular loops and probed for external accessibility for labeling with a membrane-impermeable, sulfhydryl-specific biotinylating reagent in intact cells expressing these mutants. The results provide experimental evidence for a topological model of a 13-transmembrane domain protein with an extracellular amino terminus and an intracellular carboxyl terminus. We also constructed a three-dimensional homology model of CHT1 based on the crystal structure of the bacterial Na(+)/galactose cotransporter, which supports our conclusion of CHT1 transmembrane topology. Furthermore, we examined whether CHT1 exists as a monomer or oligomer. Chemical cross-linking induces the formation of a higher molecular weight form of CHT1 on the cell surface in HEK293 cells. Two different epitope-tagged CHT1 proteins expressed in the same cells can be co-immunoprecipitated. Moreover, co-expression of an inactive mutant I89A with the wild type induces a dominant-negative effect on the overall choline uptake activity. These results indicate that CHT1 forms a homo-oligomer on the cell surface in cultured cells.


Assuntos
Membrana Celular/metabolismo , Simportadores/química , Simportadores/metabolismo , Colina/metabolismo , Cisteína/genética , Genes Dominantes , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
19.
Biochem Biophys Res Commun ; 426(2): 260-5, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22935423

RESUMO

Guanylyl cyclase-B receptor (GC-B) is a membrane receptor that induces intracellular accumulation of cGMP when a specific ligand, C-type natriuretic peptide (CNP), binds to the extracellular ligand-binding domain (ECD). Despite of its medical and biological importance, characterization of GC-B is hampered by limited amounts of protein obtainable. To circumvent this problem, a method was developed for rapidly and semi-automatically establishing stable cell lines specialized for large-scale production. This method, utilizing a bicistronic expression vector for co-expressing a green fluorescent protein and FACS-based selection of high-expressing cells, is generally applicable. It worked particularly well with the ECD and yielded highly purified ECD at 1 mg/l of culture medium by affinity chromatography using modified CNPs. Measurements of ligand-binding and guanylyl cyclase activities for various natriuretic peptides showed that, as expected, CNP is by far the most potent agonist of GC-B with IC(50) of ~7.5 nM. This value is at least an order of magnitude larger than that reported earlier but similar to that established with the guanylyl cyclase-A receptor for its ligand, atrial natriuretic peptide. The methods developed here will be useful, at the least, for characterizing other members of the guanylyl cyclase receptor family.


Assuntos
Técnicas de Cultura de Células , Receptores do Fator Natriurético Atrial/biossíntese , Sequência de Aminoácidos , Cromatografia de Afinidade , Vetores Genéticos , Células HEK293 , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/isolamento & purificação
20.
Proc Natl Acad Sci U S A ; 106(33): 13742-7, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666591

RESUMO

The sodium-potassium pump (Na(+),K(+)-ATPase) is responsible for establishing Na(+) and K(+) concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na(+),K(+)-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 A resolution in a state analogous to E2.2K(+).Pi. Ouabain is deeply inserted into the transmembrane domain with the lactone ring very close to the bound K(+), in marked contrast to previous models. Due to antagonism between ouabain and K(+), the structure represents a low-affinity ouabain-bound state. Yet, most of the mutagenesis data obtained with the high-affinity state are readily explained by the present crystal structure, indicating that the binding site for ouabain is essentially the same. According to a homology model for the high affinity state, it is a closure of the binding cavity that confers a high affinity.


Assuntos
Ouabaína/química , Potássio/química , ATPase Trocadora de Sódio-Potássio/química , Adenosina Trifosfatases/química , Sítios de Ligação , Carboidratos/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio , Cinética , Lactonas/química , Bicamadas Lipídicas , Conformação Molecular , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA