Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Am J Pathol ; 193(9): 1223-1233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263342

RESUMO

The SF3B4 gene encodes a highly conserved protein that plays a critical role in mRNA splicing. Mutations in this gene are known to cause Nager syndrome, a rare craniofacial disorder. Although SF3B4 expression is detected in the optic vesicle before it is detected in the limb and somite, the role of SF3B4 in the eye is not well understood. This study investigated the function of sf3b4 in the retina by performing transcriptome profiles, immunostaining, and behavioral analysis of sf3b4-/- mutant zebrafish. Results from this study suggest that dysregulation of the spliceosome complex affects not only craniofacial development but also retinogenesis. Zebrafish lacking functional sf3b4 displayed characteristics similar to retinitis pigmentosa (RP), marked by severe retinal pigment epithelium defects and rod degeneration. Pathway analysis revealed altered retinol metabolism and retinoic acid signaling in the sf3b4-/- mutants. Supplementation of retinoic acid rescued key cellular phenotypes observed in the sf3b4-/- mutants, offering potential therapeutic strategies for RP in the future. In conclusion, this study sheds light on the previously unknown role of SF3B4 in retinogenesis and provides insights into the underlying mechanisms of RP.


Assuntos
Retinose Pigmentar , Spliceossomos , Animais , Spliceossomos/genética , Spliceossomos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fatores de Processamento de RNA/genética , Mutação , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Tretinoína/metabolismo
2.
Exp Eye Res ; 240: 109819, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311285

RESUMO

Posterior subcapsular cataract (PSC) frequently develops as a complication in patients with retinitis pigmentosa (RP). Despite numerous scientific investigations, the intricate pathomechanisms underlying cataract formation in individuals affected by RP remain elusive. Therefore, our study aims to elucidate the potential pathogenesis of cataracts in an RP model using splicing factor subunit 3b (sf3b4) mutant zebrafish. By analyzing our previously published transcriptome dataset, we identified that, in addition to RP, cataract was listed as the second condition in our transcriptomic analysis. Furthermore, we confirmed the presence of nucleus retention in the lens fiber cells, along with abnormal cytoskeleton expression in both the lens fiber cells and lens epithelial cells in sf3b4-depleted fish. Upon closer examination, we identified 20 differentially expressed genes (DEGs) that played a role in cataract formation, with 95 % of them related to the downregulation of structural lens proteins. Additionally, we also identified that among all the DEGs, 13 % were associated with fibrotic processes. It seems that the significant upregulation of inflammatory mediators, in conjunction with TGF-ß signaling, plays a central role in the cellular biology of PSC and posterior capsular opacification (PCO) in sf3b4 mutant fish. In summary, our study provides valuable insights into cataract formation in the RP model of sf3b4 mutants, highlighting its complexity driven by changes in structural lens proteins and increased cytokines/growth factors.


Assuntos
Opacificação da Cápsula , Catarata , Cristalinas , Cristalino , Retinose Pigmentar , Humanos , Animais , Peixe-Zebra/genética , Transcriptoma , Catarata/etiologia , Opacificação da Cápsula/etiologia , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Cristalinas/genética
3.
Zoolog Sci ; 41(1): 68-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587519

RESUMO

Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.


Assuntos
Duplicação Gênica , Receptores Androgênicos , Masculino , Animais , Feminino , Receptores Androgênicos/genética , Caracteres Sexuais , Reprodução , Peixes/genética
4.
Biochem Biophys Res Commun ; 652: 76-83, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36827861

RESUMO

Variants in the gene encoding trafficking protein particle complex 11 (TRAPPC11) cause limb-girdle muscular dystrophy R18 (LGMD R18). Although recently several genes related to myopathies have been identified, correlations between genetic causes and signaling events that lead from mutation to the disease phenotype are still mostly unclear. Here, we utilized zebrafish to model LGMD R18 by specifically inactivating trappc11 using antisense-mediated knockdown strategies and evaluated the resulting muscular phenotypes. Targeted ablation of trappc11 showed compromised skeletal muscle function due to muscle disorganization and myofibrosis. Our findings pinpoint that fish lacking functional trappc11 suppressed FGF8, which resulted in the aberrant activation of Notch signaling and eventually stimulated epithelial-mesenchymal transition (EMT) and fibrotic changes in the skeletal muscle. In summary, our study provides the role of FGF8 in the pathogenesis and its therapeutic potential of LGMD R18.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Animais , Peixe-Zebra , Distrofia Muscular do Cíngulo dos Membros/genética , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutação
5.
Biochem Biophys Res Commun ; 664: 100-107, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141637

RESUMO

Fatty acid oxidation disorders (FAODs) are a group of rare genetic metabolic disorders caused by mutations in genes responsible for transporting and metabolizing fatty acids in the mitochondria. One crucial enzyme involved in this process is carnitine palmitoyltransferase I (CPT1), which transports long-chain fatty acids to the mitochondrial matrix for beta-oxidation. Defects in beta-oxidation enzymes often lead to pigmentary retinopathy; however, the underlying mechanisms are not entirely understood. To investigate FAOD and its impact on the retina, we employed zebrafish as a model organism. Specifically, we used antisense-mediated knockdown strategies to target the cpt1a gene and examined the resulting retinal phenotypes. We demonstrated that the cpt1a MO-injected fish significantly reduced the length of connecting cilia and severely affected photoreceptor cell development. Moreover, our findings highlight that the loss of functional cpt1a disrupted energy homeostasis in the retina, leading to lipid droplet deposition and promoting ferroptosis, which is likely attributed to the photoreceptor degeneration and visual impairments observed in the cpt1a morphants.


Assuntos
Doenças Retinianas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Doenças Retinianas/etiologia , Oxirredução , Ácidos Graxos/metabolismo , Carnitina/metabolismo
6.
J Appl Toxicol ; 41(9): 1390-1399, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33336402

RESUMO

The G protein-coupled estrogen receptor 1 (Gper1) is a membrane-bound estrogen receptor that mediates non-genomic action of estrogens. A Gper1-mediating pathway has been implicated in reproductive activities in fish, including oocyte growth, but Gper1 has been characterized in only a very limited number of fish species. In this study, we cloned and characterized two genes encoding medaka (Oryzias latipes) Gper1s, namely, Gper1a and Gper1b, and phylogenic and synteny analyses suggest that these genes originate through a teleost-specific whole genome duplication event. We found that Gper1a induced phosphorylation of mitogen-activated protein kinase (MAPK) in 293T cells transfected with medaka Gper1s on exposure to the natural estrogen, 17ß-estradiol (E2) and a synthetic Gper1 agonist (G-1), and treatment with both E2 and G-1 also decreased the rate of spontaneous maturation in medaka oocytes. These findings show that the processes for oocyte growth and maturation are sensitive to estrogens and are possibly mediated through Gper1a in medaka. We also show that 17α-ethinylestradiol (EE2), one of the most potent estrogenic endocrine-disrupting chemicals, and bisphenol A (BPA, a weak environmental estrogen) augmented phosphorylation of MAPK through medaka Gper1s in 293T cells. Interestingly, however, treatment with EE2 or BPA did not attenuate maturation of medaka oocytes. Our findings support that Gper1-mediated effects on oocytes are conserved among fish species, but effects of estrogenic endocrine-disrupting chemicals on oocytes acting through Gper1 may be divergent among fish species.


Assuntos
Oryzias/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Animais , Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/farmacologia , Estradiol/metabolismo , Etinilestradiol/metabolismo , Feminino , Peixes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fenóis/farmacologia , Fosforilação , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Especificidade da Espécie
7.
Mol Biol Evol ; 33(1): 228-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26507457

RESUMO

Steroid hormone receptor family provides an example of evolution of diverse transcription factors through whole-genome duplication (WGD). However, little is known about how their functions have been evolved after the duplication. Teleosts present a good model to investigate an accurate evolutionary history of protein function after WGD, because a teleost-specific WGD (TSGD) resulted in a variety of duplicated genes in modern fishes. This study focused on the evolution of androgen receptor (AR) gene, as two distinct paralogs, ARα and ARß, have evolved in teleost lineage after TSGD. ARα showed a unique intracellular localization with a higher transactivation response than that of ARß. Using site-directed mutagenesis and computational prediction of protein-ligand interactions, we identified two key substitutions generating a new functionality of euteleost ARα. The substitution in the hinge region contributes to the unique intracellular localization of ARα. The substitution on helices 10/11 in the ligand-binding domain possibly modulates hydrogen bonds that stabilize the receptor-ligand complex leading to the higher transactivation response of ARα. These substitutions were conserved in Acanthomorpha (spiny-rayed fish) ARαs, but not in an earlier branching lineage among teleosts, Japanese eel. Insertion of these substitutions into ARs from Japanese eel recapitulates the evolutionary novelty of euteleost ARα. These findings together indicate that the substitutions generating a new functionality of teleost ARα were fixed in teleost genome after the divergence of the Elopomorpha lineage. Our findings provide a molecular explanation for an adaptation process leading to generation of the hyperactive AR subtype after TSGD.


Assuntos
Peixes/genética , Mutação/genética , Receptores Androgênicos/genética , Receptores Androgênicos/fisiologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Evolução Molecular , Duplicação Gênica , Dados de Sequência Molecular , Alinhamento de Sequência , Fatores de Transcrição
8.
Dev Growth Differ ; 59(6): 552-561, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28782810

RESUMO

Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptor (ESR) in all vertebrates. Most vertebrates have two ESR subtypes (ESR1 and ESR2), whereas teleost fish have at least three (Esr1, Esr2a and Esr2b). Intricate functionalization has been suggested among the Esr subtypes, but to date, distinct roles of Esr have been characterized in only a limited number of species. Study of loss-of-function in animal models is a powerful tool for application to understanding vertebrate reproductive biology. In the current study, we established esr1 knockout (KO) medaka using a TALEN approach and examined the effects of Esr1 ablation. Unexpectedly, esr1 KO medaka did not show any significant defects in their gonadal development or in their sexual characteristics. Neither male or female esr1 KO medaka exhibited any significant changes in sexual differentiation or reproductive activity compared with wild type controls. Interestingly, however, estrogen-induced vitellogenin gene expression, an estrogen-responsive biomarker in fish, was limited in the liver of esr1 KO males. Our findings, in contrast to mammals, indicate that Esr1 is dispensable for normal development and reproduction in medaka. We thus provide an evidence for estrogen receptor functionalization between mammals and fish. Our findings will also benefit interpretation of studies into the toxicological effects of estrogenic chemicals in fish.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas de Peixes/metabolismo , Oryzias/fisiologia , Reprodução/fisiologia , Desenvolvimento Sexual/fisiologia , Animais , Animais Geneticamente Modificados , Biomarcadores Ambientais/genética , Biomarcadores Ambientais/fisiologia , Receptor alfa de Estrogênio/genética , Feminino , Proteínas de Peixes/genética , Masculino , Oryzias/genética , Reprodução/genética , Desenvolvimento Sexual/genética
9.
BMC Genomics ; 17: 77, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26810479

RESUMO

BACKGROUND: The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. RESULTS: Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. CONCLUSIONS: Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination.


Assuntos
Jacarés e Crocodilos/genética , RNA/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Temperatura , Transcriptoma/genética , Jacarés e Crocodilos/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Processos de Determinação Sexual/fisiologia , Diferenciação Sexual/fisiologia
10.
Zoolog Sci ; 33(1): 31-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26853866

RESUMO

The freshwater crustacean genus Daphnia has been used extensively in ecological, developmental and ecotoxicological studies. Daphnids produce only female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable conditions and external stimuli, they produce male offspring. Although we reported that exogenous exposure to juvenile hormones and their analogs can induce male offspring even under female-producing conditions, we recently established a male induction system in the Daphnia pulex WTN6 strain simply by changing day-length. This male and female induction system is suitable for understanding the innate mechanisms of sexual dimorphic development in daphnids. Embryogenesis has been described as a normal plate (developmental staging) in various daphnid species; however, all studies have mainly focused on female development. Here, we describe the developmental staging of both sexes during embryogenesis in two representative daphnids, D. pulex and D. magna, based on microscopic time-course observations. Our findings provide the first detailed insights into male embryogenesis in both species, and contribute to the elucidation of the mechanisms underlying sexual differentiation in daphnids.


Assuntos
Daphnia/embriologia , Desenvolvimento Embrionário , Animais , Feminino , Masculino , Fatores Sexuais
11.
Gen Comp Endocrinol ; 238: 88-95, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27072832

RESUMO

Steroid hormones are a key regulator of reproductive biology in vertebrates, and are largely regulated via nuclear receptor families. Estrogen signaling is regulated by two estrogen receptor (ER) subtypes alpha and beta in the nucleus. In order to understand the role of estrogen in vertebrates, these ER from various species have been isolated and were functionally analyzed using luciferase reporter gene assays. Interestingly, species difference in estrogen sensitivity has been noted in the past, and it was reported that snake ER displayed highest estrogen sensitivity. Here, we isolated additional ER from three lizards: chameleon (Bradypodion pumilum), skink (Plestiodon finitimus), and gecko (Gekko japonicus). We have performed functional characterization of these ERs using reporter gene assay system, and found high estrogen sensitivity in all three species. Furthermore, comparison with results from other tetrapod ER revealed a seemingly uniform gradual pattern of ligand sensitivity evolution. In silico 3D homology modeling of the ligand-binding domain revealed structural variation at three sites, helix 2, and juncture between helices 8 and 9, and caudal region of helix 10/11. Docking simulations indicated that predicted ligand-receptor interaction also correlated with the reporter assay results, and overall squamates displayed highest stabilized interactions. The assay system and homology modeling system provides tool for in-depth comparative analysis of estrogen function, and provides insight toward the evolution of ER among vertebrates.


Assuntos
Evolução Biológica , Lagartos/metabolismo , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Simulação por Computador , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Ligantes , Modelos Moleculares , Domínios Proteicos , Receptores de Estrogênio/química , Transcrição Gênica
12.
J Appl Toxicol ; 36(11): 1476-85, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26898244

RESUMO

Embryo development in arthropods is accompanied by a series of moltings. A cladoceran crustacean Daphnia magna molts three times before reaching first instar neonate during embryogenesis. Previous studies argued ecdysteroids might regulate D. magna embryogenesis. However, no direct evidence between innate ecdysteroids fluctuation and functions has been forthcoming. Recently, we identified genes involved in ecdysteroid synthesis called, neverland (neverland1 and neverland 2) and shade and in the ecdysteroid degradation (Cyp18a1). To understand the physiological roles of ecdysteroids in D. magna embryos, we performed expression and functional analyzes of those genes. Examining innate ecdysteroids titer during embryogenesis showed two surges of ecdysteroids titer at 41 and 61 h after oviposition. The first and second embryonic moltings occurred at each ecdysteroid surge. Expression of neverland1 and shade began to increase before the first peak in ecdysteroid. Knockdown of neverland1 or shade by RNAi technique caused defects in embryonic moltings and subsequent development. The ecdysteroids titer seemingly decreased in nvd1-knowckdown embryos. Knockdown of Cyp18a1 resulted in early embryonic lethality before the first molting. Our in situ hybridization analysis revealed that nvd1 was prominently expressed in embryonic gut epithelium suggesting the site for an initial step of ecdysteroidgenesis, a conversion of cholesterol to 7-dehydrocholesterol and possibly for ecdysone production. Taken together, de novo ecdysteroid synthesis by nvd1 in the gut epithelial cells stimulates molting, which is indispensable for D. magna embryo development. These findings identify neverland as a possible target for chemicals, including various pesticides that are known to disrupt molting, development and reproduction. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Daphnia/crescimento & desenvolvimento , Ecdisteroides/biossíntese , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Muda/genética , Animais , Daphnia/efeitos dos fármacos , Ecdisteroides/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes de Insetos , Muda/efeitos dos fármacos
13.
BMC Genomics ; 16: 186, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25867484

RESUMO

BACKGROUND: The cladoceran crustacean Daphnia pulex produces female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable external stimuli, it produces male offspring (environmental sex determination: ESD). We recently established an innovative system for ESD studies using D. pulex WTN6 strain, in which the sex of the offspring can be controlled simply by changes in the photoperiod: the long-day and short-day conditions can induce female and male offspring, respectively. Taking advantage of this system, we demonstrated that de novo methyl farnesoate (MF) synthesis is necessary for male offspring production. These results indicate the key role of innate MF signaling as a conductor between external environmental stimuli and the endogenous male developmental pathway. Despite these findings, the molecular mechanisms underlying up- and downstream signaling of MF have not yet been well elucidated in D. pulex. RESULTS: To elucidate up- and downstream events of MF signaling during sex determination processes, we compared the transcriptomes of daphnids reared under the long-day (female) condition with short-day (male) and MF-treated (male) conditions. We found that genes involved in ionotropic glutamate receptors, known to mediate the vast majority of excitatory neurotransmitting processes in various organisms, were significantly activated in daphnids by the short-day condition but not by MF treatment. Administration of specific agonists and antagonists, especially for the N-methyl-D-aspartic acid (NMDA) receptor, strongly increased or decreased, respectively, the proportion of male-producing mothers. Moreover, we also identified genes responsible for male production (e.g., protein kinase C pathway-related genes). Such genes were generally shared between the short-day reared and MF-treated daphnids. CONCLUSIONS: We identified several candidate genes regulating ESD which strongly suggests that these genes may be essential factors for male offspring production as an upstream regulator of MF signaling in D. pulex. This study provides new insight into the fundamental mechanisms underlying how living organisms alter their phenotypes in response to various external environments.


Assuntos
Cladocera/metabolismo , Ácidos Graxos Insaturados/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reprodução , Transdução de Sinais , Animais , Cladocera/genética , Biologia Computacional/métodos , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Biológicos , Receptores de Glutamato/metabolismo
14.
Environ Sci Technol ; 49(12): 7439-47, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26032098

RESUMO

Exposure to endocrine disrupting chemicals (EDCs) can elicit adverse effects on development, sexual differentiation, and reproduction in fish. Teleost species exhibit at least three subtypes of estrogen receptor (ESR), ESR1, ESR2a, and ESR2b; thus, estrogenic signaling pathways are complex. We applied in vitro reporter gene assays for ESRs in five fish species to investigate the ESR subtype-specificity for better understanding the signaling pathway of estrogenic EDCs. Responses to bisphenol A, 4-nonylphenol, and o,p'-DDT varied among ESR subtypes, and the response pattern of ESRs was basically common among the different fish species. Using a computational in silico docking model and through assays quantifying transactivation of the LBD (using GAL-LBD fusion proteins and chimera proteins for the ESR2s), we found that the LBD of the different ESR subtypes generally plays a key role in conferring responsiveness of the ESR subtypes to EDCs. These results also indicate that responses of ESR2s to EDCs cannot necessarily be predicted from the LBD sequence alone, and an additional region is required for full transactivation of these receptors. Our data thus provide advancing understanding on receptor functioning for both basic and applied research.


Assuntos
Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Estrogênios/toxicidade , Oryzias/genética , Receptores de Estrogênio/metabolismo , Aminoácidos/metabolismo , Animais , Compostos Benzidrílicos/toxicidade , Células COS , Chlorocebus aethiops , Clonagem Molecular , Simulação por Computador , DDT/toxicidade , Estradiol/farmacologia , Células HEK293 , Humanos , Ligantes , Fenóis/toxicidade , Filogenia , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
15.
Gen Comp Endocrinol ; 212: 84-91, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644213

RESUMO

Androgen receptors (ARs) mediate the physiological effects of androgens in vertebrates. In fishes, AR-mediated pathways can be modulated by aquatic contaminants, resulting in the masculinisation of female fish or diminished secondary sex characteristics in males. The Murray-Darling rainbowfish (Melanotaenia fluviatilis) is a small-bodied freshwater teleost used in Australia as a test species for environmental toxicology research. We determined concentration-response profiles for selected agonists and antagonists of rainbowfish ARα and ARß using transient transactivation assays. For both ARα and ARß, the order of potency of natural agonists was 11-ketotestosterone (11-KT)>5α-dihydrotestosterone>testosterone>androstenedione. Methyltestosterone was a highly potent agonist of both receptors relative to 11-KT. The relative potency of the veterinary growth-promoting androgen, 17ß-trenbolone, varied by more than a factor of 5 between ARα and ARß. The non-steroidal anti-androgen bicalutamide exhibited high inhibitory potency relative to the structurally related model anti-androgen, flutamide. The inhibitory potency of the agricultural fungicide, vinclozolin, was approximately 1.7-fold relative to flutamide for ARα, but over 20-fold in the case of ARß. Fluorescent protein tagging of ARs showed that the rainbowfish ARα subtype is constitutively localised to the nucleus, while ARß is cytoplasmic in the absence of ligand, an observation which agrees with the reported subcellular localisation of AR subtypes from other teleost species. Collectively, these data suggest that M. fluviatilis ARα and ARß respond differently to environmental AR modulators and that in vivo sensitivity to contaminants may depend on the tissue distribution of the AR subtypes at the time of exposure.


Assuntos
Antagonistas de Androgênios/farmacologia , Peixes/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Animais , Austrália , Feminino , Masculino , Microscopia de Fluorescência , Oxazóis/farmacologia , Filogenia , Isoformas de Proteínas , Especificidade por Substrato , Ativação Transcricional , Acetato de Trembolona/farmacologia , Virilismo
16.
J Appl Toxicol ; 35(3): 302-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25056680

RESUMO

Various receptor bioassays, including estrogens, androgens and thyroid hormones, have been developed and applied successfully for assessing hormone function in a wide range of animal species, including fish. In fish, corticosteroids play a pivotal role in physiology as they do in mammals, but far less is known about the corticosteroid receptor system in fish compared with in mammals. Here we established a transient transactivation assay using the Japanese medaka, Oryzias latipes, glucocorticoid receptors (olGRs) and mineralocorticoid receptor to analyse their functional properties in a fish. We found that olGR2 was highly responsive to glucocorticoids, similar to the human GR, whereas the olGR1 subtype was minimally responsive. Thus, olGR2 most likely mediates glucocorticoid signaling in medaka. We further tested crosstalk between GRs and other steroid hormones, and found that progestins could activate or inactivate olGR2-mediating transcription, depending on the presence or absence of cortisol. The transactivation assays developed for medaka GRs provide tools to gain useful insights into corticosteroid signaling in fish and for in vitro screening of environmental substances activating GRs.


Assuntos
Disruptores Endócrinos/farmacologia , Oryzias/metabolismo , Progestinas/farmacologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos , Receptor Cross-Talk , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Ativação Transcricional , Transfecção
17.
BMC Biotechnol ; 14: 95, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404042

RESUMO

BACKGROUND: The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. RESULTS: We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. CONCLUSIONS: We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.


Assuntos
Daphnia/genética , Endonucleases/metabolismo , Marcação de Genes/métodos , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Daphnia/embriologia , Daphnia/metabolismo , Endonucleases/genética , Genoma , Células HEK293 , Humanos , Microinjeções , Dados de Sequência Molecular , Mutagênese , Genética Reversa , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Environ Sci Technol ; 48(18): 10919-28, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25171099

RESUMO

Widespread environmental antiandrogen contamination has been associated with negative impacts on biodiversity and human health. In particular, many pesticides are antiandrogenic, creating a need for robust and sensitive environmental monitoring. Our aim was to develop a sensitive and specific transgenic medaka (Oryzias latipes) model bearing an androgen responsive fluorescent reporter construct for whole organism-based environmental screening of pro- and antiandrogens. We analyzed the 5' regions of the androgen responsive three-spined stickleback (Gasterosteus aculeatus) spiggin genes in silico, revealing conserved blocks of sequence harboring androgen response elements. Identified putative promoters were cloned upstream of GFP. Germinal transgenesis with spg1-gfp led to stable medaka lines. GFP induction was exclusive to the kidney, the site of spiggin protein production in sticklebacks. Significant GFP expression was induced by three or four-day androgen treatment of newly hatched fry, but not by estrogens, mineralocorticoids, glucocorticoids or progestogens. The model responded dose-dependently to androgens, with highest sensitivity to 17MT (1.5 µg/L). In addition to flutamide, the biocides fenitrothion, vinclozolin and linuron significantly inhibited 17MT-induced GFP induction, validating the model for detection of antiandrogens. The spg1-gfp medaka model provides a sensitive, specific, and physiologically pertinent biosensor system for analyzing environmental androgen activity.


Assuntos
Antagonistas de Androgênios/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Oryzias/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Clonagem Molecular , Fluorescência , Humanos , Dados de Sequência Molecular , Oryzias/genética , Regiões Promotoras Genéticas/genética , Receptores Androgênicos/metabolismo , Smegmamorpha
19.
Environ Sci Technol ; 48(9): 5254-63, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24689804

RESUMO

Exposure to estrogenic endocrine disrupting chemicals (EDCs) induces a range of adverse effects, notably on reproduction and reproductive development. These responses are mediated via estrogen receptors (ERs). Different species of fish may show differences in their responsiveness to environmental estrogens but there is very limited understanding on the underlying mechanisms accounting for these differences. We used custom developed in vitro ERα reporter gene assays for nine fish species to analyze the ligand- and species-specificity for 12 environmental estrogens. Transcriptonal activities mediated by estradiol-17ß (E2) were similar to only a 3-fold difference in ERα sensitivity between species. Diethylstilbestrol was the most potent estrogen (∼ 10-fold that of E2) in transactivating the fish ERαs, whereas equilin was about 1 order of magnitude less potent in all species compared to E2. Responses of the different fish ERαs to weaker environmental estrogens varied, and for some considerably. Medaka, stickleback, bluegill and guppy showed higher sensitivities to nonylphenol, octylphenol, bisphenol A and the DDT-metabolites compared with cyprinid ERαs. Triclosan had little or no transactivation of the fish ERαs. By constructing ERα chimeras in which the AF-containing domains were swapped between various fish species with contrasting responsiveness and subsequent exposure to different environmental estrogens. Our in vitro data indicate that the LBD plays a significant role in accounting for ligand sensitivity of ERα in different species. The differences seen in responsiveness to different estrogenic chemicals between species indicate environmental risk assessment for estrogens cannot necessarily be predicted for all fish by simply examining receptor activation for a few model fish species.


Assuntos
Disruptores Endócrinos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Peixes/metabolismo , Poluentes Químicos da Água/farmacologia , Animais , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Genes Reporter , Ligantes , Estrutura Terciária de Proteína , Especificidade da Espécie , Ativação Transcricional/efeitos dos fármacos
20.
J Appl Toxicol ; 34(5): 537-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24038158

RESUMO

Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes.


Assuntos
Daphnia/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônios Juvenis/agonistas , Metoprene/toxicidade , Fenilcarbamatos/toxicidade , Terpenos/toxicidade , Animais , Animais Recém-Nascidos , Daphnia/genética , Daphnia/crescimento & desenvolvimento , Daphnia/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Ontologia Genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reprodução/efeitos dos fármacos , Reprodução/genética , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Transcriptoma/efeitos dos fármacos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA