Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(8)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209454

RESUMO

BACKGROUND: Immune checkpoint protein V-domain immunoglobulin suppressor of T cell activation (VISTA) controls antitumor immunity and is a valuable target for cancer immunotherapy. Previous mechanistic studies have indicated that VISTA impairs the toll-like receptor (TLR)-mediated activation of myeloid antigen-presenting cells, promoting the expansion of myeloid-derived suppressor cells, and suppressing tumor-reactive cytotoxic T cell function. METHODS: The aim of this study was to develop a dual-action lipid nanoparticle (dual-LNP) coloaded with VISTA-specific siRNA and TLR9 agonist CpG oligonucleotide. We used three murine preclinical tumor models, melanoma YUMM1.7, melanoma B16F10, and colon carcinoma MC38 to assess the functional synergy of the two cargoes of the dual LNP and therapeutic efficacy. RESULTS: The dual-LNP synergistically augmented antitumor immune responses and rejected large established tumors whereas LNPs containing VISTA siRNA or CpG alone were ineffective. In comparison with therapies using the soluble CpG and a VISTA-specific monoclonal antibody, the dual-LNP demonstrated superior therapeutic efficacy yet with reduced systemic inflammatory cytokine production. In three murine models, the dual-LNP treatment achieved a high cure rate. Tumor rejection was associated with influx of immune cells to tumor tissues, augmented dendritic cell activation, production of proinflammatory cytokines, and improved function of cytotoxic T cells. CONCLUSIONS: Our studies show the dual-LNP ensured codelivery of its synergistic cargoes to tumor-infiltrating myeloid cells, leading to simultaneous silencing of VISTA and stimulation of TLR9. As a result, the dual-LNP drove a highly potent antitumor immune response that rejected large aggressive tumors, thus may be a promising therapeutic platform for treating immune-cold tumors.


Assuntos
Antígenos B7 , Nanopartículas , Animais , Camundongos , Feminino , Imunoterapia/métodos , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo
2.
Pharmaceutics ; 13(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062883

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is one of the major risk factors for glaucoma onset and progression, and available pharmaceutical interventions are exclusively targeted at IOP lowering. However, degeneration of retinal ganglion cells (RGCs) may continue to progress despite extensive lowering of IOP. A complementary strategy to IOP reduction is the use of neuroprotective agents that interrupt the process of cell death by mechanisms independent of IOP. Here, we describe an ion complexation approach for formulating microcrystals containing ~50% loading of a protein kinase inhibitor, sunitinib, to enhance survival of RGCs with subconjunctival injection. A single subconjunctival injection of sunitinib-pamoate complex (SPC) microcrystals provided 20 weeks of sustained retina drug levels, leading to neuroprotection in a rat model of optic nerve injury. Furthermore, subconjunctival injection of SPC microcrystals also led to therapeutic effects in a rat model of corneal neovascularization. Importantly, therapeutically relevant retina drug concentrations were achieved with subconjunctival injection of SPC microcrystals in pigs. For a chronic disease such as glaucoma, a formulation that provides sustained therapeutic effects to complement IOP lowering therapies could provide improved disease management and promote patient quality of life.

3.
Nat Biomed Eng ; 4(11): 1053-1062, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895514

RESUMO

Eye-drop formulations should hold as high a concentration of soluble drug in contact with ocular epithelium for as long as possible. However, eye tears and frequent blinking limit drug retention on the ocular surface, and gelling drops typically form clumps that blur vision. Here, we describe a gelling hypotonic solution containing a low concentration of a thermosensitive triblock copolymer for extended ocular drug delivery. On topical application, the hypotonic formulation forms a highly uniform and clear thin layer that conforms to the ocular surface and resists clearance from blinking, increasing the intraocular absorption of hydrophilic and hydrophobic drugs and extending the drug-ocular-epithelium contact time with respect to conventional thermosensitive gelling formulations and commercial eye drops. We also show that the conformal gel layer allows for therapeutically relevant drug delivery to the posterior segment of the eyeball in pigs. Our findings highlight the importance of formulations that conform to the ocular surface before viscosity enhancement for increased and prolonged ocular surface contact and drug absorption.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Olho/efeitos dos fármacos , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/síntese química , Administração Tópica , Animais , Olho/diagnóstico por imagem , Feminino , Géis/administração & dosagem , Géis/química , Soluções Hipotônicas/administração & dosagem , Soluções Hipotônicas/química , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , Coelhos , Ratos Sprague-Dawley , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA