Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 160(3): 367-80, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25619691

RESUMO

The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking-a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína Homóloga a MRE11 , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
Cell ; 159(2): 358-73, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303530

RESUMO

Enhancers provide critical information directing cell-type-specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here, we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome.


Assuntos
Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Estrogênios/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Complexos Multiproteicos/metabolismo
3.
Nature ; 595(7867): 444-449, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194047

RESUMO

The size of the transcriptional program of long non-coding RNAs in the mammalian genome has engendered discussions about their biological roles1, particularly the promoter antisense (PAS) transcripts2,3. Here we report the development of an assay-referred to as chromatin isolation by RNA-Cas13a complex-to quantitatively detect the distribution of RNA in the genome. The assay revealed that PAS RNAs serve as a key gatekeeper of a broad transcriptional pause release program, based on decommissioning the 7SK small nuclear RNA-dependent inhibitory P-TEFb complex. Induction of PAS RNAs by liganded ERα led to a significant loss of H3K9me3 and the release of basally recruited HP1α and KAP1 on activated target gene promoters. This release was due to PAS RNA-dependent recruitment of H3K9me3 demethylases, which required interactions with a compact stem-loop structure in the PAS RNAs, an apparent feature of similarly regulated PAS RNAs. Activation of the ERα-bound MegaTrans enhancer, which is essential for robust pause release, required the recruitment of phosphorylated KAP1, with its transfer to the cognate promoters permitting 17ß-oestradiol-induced pause release and activation of the target gene. This study reveals a mechanism, based on RNA structure, that mediates the function of PAS RNAs in gene regulation.


Assuntos
Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , RNA Antissenso/química , RNA Antissenso/genética , Ativação Transcricional/genética , Linhagem Celular , Homólogo 5 da Proteína Cromobox/metabolismo , Proteína Substrato Associada a Crk , Receptor alfa de Estrogênio/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ligantes , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Estabilidade de RNA , Proteína 28 com Motivo Tripartido/metabolismo
4.
Nature ; 595(7869): 735-740, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040254

RESUMO

The functional engagement between an enhancer and its target promoter ensures precise gene transcription1. Understanding the basis of promoter choice by enhancers has important implications for health and disease. Here we report that functional loss of a preferred promoter can release its partner enhancer to loop to and activate an alternative promoter (or alternative promoters) in the neighbourhood. We refer to this target-switching process as 'enhancer release and retargeting'. Genetic deletion, motif perturbation or mutation, and dCas9-mediated CTCF tethering reveal that promoter choice by an enhancer can be determined by the binding of CTCF at promoters, in a cohesin-dependent manner-consistent with a model of 'enhancer scanning' inside the contact domain. Promoter-associated CTCF shows a lower affinity than that at chromatin domain boundaries and often lacks a preferred motif orientation or a partnering CTCF at the cognate enhancer, suggesting properties distinct from boundary CTCF. Analyses of cancer mutations, data from the GTEx project and risk loci from genome-wide association studies, together with a focused CRISPR interference screen, reveal that enhancer release and retargeting represents an overlooked mechanism that underlies the activation of disease-susceptibility genes, as exemplified by a risk locus for Parkinson's disease (NUCKS1-RAB7L1) and three loci associated with cancer (CLPTM1L-TERT, ZCCHC7-PAX5 and PVT1-MYC).


Assuntos
Fator de Ligação a CCCTC/genética , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Regiões Promotoras Genéticas , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina , Proteínas Cromossômicas não Histona/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Células MCF-7 , Neoplasias/genética , Células-Tronco Neurais , Oncogenes , Doença de Parkinson/genética , Coesinas
5.
Cell ; 147(4): 773-88, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22078878

RESUMO

Although eukaryotic nuclei contain distinct architectural structures associated with noncoding RNAs (ncRNAs), their potential relationship to regulated transcriptional programs remains poorly understood. Here, we report that methylation/demethylation of Polycomb 2 protein (Pc2) controls relocation of growth-control genes between Polycomb bodies (PcGs) and interchromatin granules (ICGs) in response to growth signals. This movement is the consequence of binding of methylated and unmethylated Pc2 to the ncRNAs TUG1 and MALAT1/NEAT2, located in PcGs and ICGs, respectively. These ncRNAs mediate assembly of multiple corepressors/coactivators and can serve to switch mark recognition by "readers" of the histone code. Additionally, binding of NEAT2 to unmethylated Pc2 promotes E2F1 SUMOylation, leading to activation of the growth-control gene program. These observations delineate a molecular pathway linking the actions of subnuclear structure-specific ncRNAs and nonhistone protein methylation to relocation of transcription units in the three-dimensional space of the nucleus, thus achieving coordinated gene expression programs.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cromatina/metabolismo , Fator de Transcrição E2F1/metabolismo , Células HeLa , Humanos , Ligases , Metilação , Metiltransferases/metabolismo , Dados de Sequência Molecular , Proteínas do Grupo Polycomb , RNA Longo não Codificante , Proteínas Repressoras/química , Sumoilação , Transcrição Gênica , Ubiquitina-Proteína Ligases , Ubiquitinação
6.
Mol Cell ; 66(3): 321-331.e6, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475868

RESUMO

The molecular mechanisms underlying the opposing functions of glucocorticoid receptors (GRs) and estrogen receptor α (ERα) in breast cancer development remain poorly understood. Here we report that, in breast cancer cells, liganded GR represses a large ERα-activated transcriptional program by binding, in trans, to ERα-occupied enhancers. This abolishes effective activation of these enhancers and their cognate target genes, and it leads to the inhibition of ERα-dependent binding of components of the MegaTrans complex. Consistent with the effects of SUMOylation on other classes of nuclear receptors, dexamethasone (Dex)-induced trans-repression of the estrogen E2 program appears to depend on GR SUMOylation, which leads to stable trans-recruitment of the GR-N-CoR/SMRT-HDAC3 corepressor complex on these enhancers. Together, these results uncover a mechanism by which competitive recruitment of DNA-binding nuclear receptors/transcription factors in trans to hot spot enhancers serves as an effective biological strategy for trans-repression, with clear implications for breast cancer and other diseases.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor Cross-Talk , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Dexametasona/farmacologia , Regulação para Baixo , Elementos Facilitadores Genéticos , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Células MCF-7 , Complexos Multiproteicos , Mutação , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Ligação Proteica , Interferência de RNA , Receptor Cross-Talk/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Transdução de Sinais , Sumoilação , Transcrição Gênica/efeitos dos fármacos , Transcriptoma , Transfecção
7.
Nature ; 556(7702): 510-514, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670286

RESUMO

Enhancers for embryonic stem (ES) cell-expressed genes and lineage-determining factors are characterized by conventional marks of enhancer activation in ES cells1-3, but it remains unclear whether enhancers destined to regulate cell-type-restricted transcription units might also have distinct signatures in ES cells. Here we show that cell-type-restricted enhancers are 'premarked' and activated as transcription units by the binding of one or two ES cell transcription factors, although they do not exhibit traditional enhancer epigenetic marks in ES cells, thus uncovering the initial temporal origins of cell-type-restricted enhancers. This premarking is required for future cell-type-restricted enhancer activity in the differentiated cells, with the strength of the ES cell signature being functionally important for the subsequent robustness of cell-type-restricted enhancer activation. We have experimentally validated this model in macrophage-restricted enhancers and neural precursor cell (NPC)-restricted enhancers using ES cell-derived macrophages or NPCs, edited to contain specific ES cell transcription factor motif deletions. DNA hydroxyl-methylation of enhancers in ES cells, determined by ES cell transcription factors, may serve as a potential molecular memory for subsequent enhancer activation in mature macrophages. These findings suggest that the massive repertoire of cell-type-restricted enhancers are essentially hierarchically and obligatorily premarked by binding of a defining ES cell transcription factor in ES cells, dictating the robustness of enhancer activation in mature cells.


Assuntos
Diferenciação Celular/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Epigênese Genética , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Especificidade de Órgãos , Células-Tronco Pluripotentes/citologia , Reprodutibilidade dos Testes
8.
Cell ; 132(6): 996-1010, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18358812

RESUMO

While the transcriptional machinery has been extensively dissected at the molecular level, little is known about regulation of chromosomal organization in the three-dimensional space of the nucleus to achieve integrated transcriptional responses to diverse signaling events. Here, we report that ligand induces rapid interchromosomal interactions among subsets of estrogen receptor alpha-bound transcription units, with a dramatic reorganization of nuclear territories requiring nuclear actin/myosin-I transport machinery, dynein light chain 1 (DLC1), and a specific subset of transcriptional coactivators and chromatin remodeling complexes. We establish a requirement for the histone lysine demethylase, LSD1, in directing specific interchromosomal interaction loci to distinct interchromatin granules, long thought to be "storage" sites for splicing machinery, and demonstrate that these three-dimensional motor-dependent interactions are required to achieve enhanced transcription of specific estrogen-receptor target genes. These findings reveal roles for the modulation of nuclear architecture in orchestrating regulated gene-expression programs in the mammalian nucleus.


Assuntos
Cromatina/metabolismo , Receptor alfa de Estrogênio/metabolismo , Redes Reguladoras de Genes , Proteínas Motores Moleculares/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Núcleo Celular , Células Cultivadas , Histona Desmetilases , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Transcrição Gênica
10.
Circulation ; 142(22): 2138-2154, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32933333

RESUMO

BACKGROUND: Concentric and eccentric cardiac hypertrophy are associated with pressure and volume overload, respectively, in cardiovascular disease both conferring an increased risk of heart failure. These contrasting forms of hypertrophy are characterized by asymmetrical growth of the cardiac myocyte in mainly width or length, respectively. The molecular mechanisms determining myocyte preferential growth in width versus length remain poorly understood. Identification of the mechanisms governing asymmetrical myocyte growth could provide new therapeutic targets for the prevention or treatment of heart failure. METHODS: Primary adult rat ventricular myocytes, adeno-associated virus (AAV)-mediated gene delivery in mice, and human tissue samples were used to define a regulatory pathway controlling pathological myocyte hypertrophy. Chromatin immunoprecipitation assays with sequencing and precision nuclear run-on sequencing were used to define a transcriptional mechanism. RESULTS: We report that asymmetrical cardiac myocyte hypertrophy is modulated by SRF (serum response factor) phosphorylation, constituting an epigenomic switch balancing the growth in width versus length of adult ventricular myocytes in vitro and in vivo. SRF Ser103 phosphorylation is bidirectionally regulated by RSK3 (p90 ribosomal S6 kinase type 3) and PP2A (protein phosphatase 2A) at signalosomes organized by the scaffold protein mAKAPß (muscle A-kinase anchoring protein ß), such that increased SRF phosphorylation activates AP-1 (activator protein-1)-dependent enhancers that direct myocyte growth in width. AAV are used to express in vivo mAKAPß-derived RSK3 and PP2A anchoring disruptor peptides that block the association of the enzymes with the mAKAPß scaffold. Inhibition of RSK3 signaling prevents concentric cardiac remodeling induced by pressure overload, while inhibition of PP2A signaling prevents eccentric cardiac remodeling induced by myocardial infarction, in each case improving cardiac function. SRF Ser103 phosphorylation is significantly decreased in dilated human hearts, supporting the notion that modulation of the mAKAPß-SRF signalosome could be a new therapeutic approach for human heart failure. CONCLUSIONS: We have identified a new molecular switch, namely mAKAPß signalosome-regulated SRF phosphorylation, that controls a transcriptional program responsible for modulating changes in cardiac myocyte morphology that occur secondary to pathological stressors. Complementary AAV-based gene therapies constitute rationally-designed strategies for a new translational modality for heart failure.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Crescimento Celular , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Resposta Sérica/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley
11.
Nature ; 516(7530): 267-71, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25252977

RESUMO

Post-translational histone modifications have a critical role in regulating transcription, the cell cycle, DNA replication and DNA damage repair. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation or termination is of particular interest. Here we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals. This regulation is based on the phosphorylation of a highly conserved tyrosine residue, Tyr 57, in histone H2A and is mediated by the unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of Tyr 57 in H2A in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2α, the catalytic subunit of CK2, binds across RNA-polymerase-II-transcribed coding genes and active enhancers. Mutation of Tyr 57 causes a loss of H2B mono-ubiquitination as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and the H2A(Y57F) mutation enhance H2B deubiquitination activity of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA complex during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A.


Assuntos
Caseína Quinase II/metabolismo , Histonas/química , Histonas/metabolismo , Elongação da Transcrição Genética , Tirosina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Histonas/genética , Humanos , Dados de Sequência Molecular , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tirosina/química , Ubiquitinação/genética
12.
Nature ; 514(7521): 257-61, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25119036

RESUMO

Homeodomain proteins, described 30 years ago, exert essential roles in development as regulators of target gene expression; however, the molecular mechanisms underlying transcriptional activity of homeodomain factors remain poorly understood. Here investigation of a developmentally required POU-homeodomain transcription factor, Pit1 (also known as Pou1f1), has revealed that, unexpectedly, binding of Pit1-occupied enhancers to a nuclear matrin-3-rich network/architecture is a key event in effective activation of the Pit1-regulated enhancer/coding gene transcriptional program. Pit1 association with Satb1 (ref. 8) and ß-catenin is required for this tethering event. A naturally occurring, dominant negative, point mutation in human PIT1(R271W), causing combined pituitary hormone deficiency, results in loss of Pit1 association with ß-catenin and Satb1 and therefore the matrin-3-rich network, blocking Pit1-dependent enhancer/coding target gene activation. This defective activation can be rescued by artificial tethering of the mutant R271W Pit1 protein to the matrin-3 network, bypassing the pre-requisite association with ß-catenin and Satb1 otherwise required. The matrin-3 network-tethered R271W Pit1 mutant, but not the untethered protein, restores Pit1-dependent activation of the enhancers and recruitment of co-activators, exemplified by p300, causing both enhancer RNA transcription and target gene activation. These studies have thus revealed an unanticipated homeodomain factor/ß-catenin/Satb1-dependent localization of target gene regulatory enhancer regions to a subnuclear architectural structure that serves as an underlying mechanism by which an enhancer-bound homeodomain factor effectively activates developmental gene transcriptional programs.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Animais , Células Cultivadas , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Hipófise/embriologia , Hipófise/metabolismo , Ligação Proteica , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo , Transcrição Gênica/genética , beta Catenina/metabolismo
13.
Mol Cell ; 46(1): 91-104, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22424771

RESUMO

The association between hyperinflammatory states and numerous diseases is widely recognized, but our understanding of the molecular strategies that have evolved to prevent uncontrolled activation of inflammatory responses remains incomplete. Here, we report a critical, nontranscriptional role of GPS2 as a guardian against hyperstimulation of the TNF-α-induced gene program. GPS2 cytoplasmic actions are required to specifically modulate RIP1 ubiquitylation and JNK activation by inhibiting TRAF2/Ubc13 enzymatic activity. In vivo relevance of GPS2 anti-inflammatory role is confirmed by inhibition of TNF-α target genes in macrophages and by improved insulin signaling in the adipose tissue of aP2-GPS2 transgenic mice. As the nontranscriptional role is complemented by GPS2 functioning as positive and negative cofactor for nuclear receptors, in vivo overexpression also results in elevated circulating level of Resistin and development of hepatic steatosis. Together, these studies define GPS2 as a molecular guardian required for precise control of inflammatory responses involved in immunity and homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Tecido Adiposo/imunologia , Animais , Linhagem Celular , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/imunologia , Proteínas Ativadoras de GTPase/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Insulina/genética , Insulina/imunologia , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , MAP Quinase Quinase 4/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Resistina/genética , Resistina/imunologia , Resistina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/genética , Ubiquitinação/imunologia
14.
Nature ; 500(7464): 598-602, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23945587

RESUMO

Although recent studies have indicated roles of long non-coding RNAs (lncRNAs) in physiological aspects of cell-type determination and tissue homeostasis, their potential involvement in regulated gene transcription programs remains rather poorly understood. The androgen receptor regulates a large repertoire of genes central to the identity and behaviour of prostate cancer cells, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy. Here we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 (also known as PCAT8) and PCGEM1, bind successively to the androgen receptor and strongly enhance both ligand-dependent and ligand-independent androgen-receptor-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the carboxy-terminally acetylated androgen receptor on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the androgen receptor amino terminus that is methylated by DOT1L. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited pygopus 2 PHD domain enhances selective looping of androgen-receptor-bound enhancers to target gene promoters in these cells. In 'resistant' prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full-length androgen receptor, causing ligand-independent activation of the androgen receptor transcriptional program and cell proliferation. Conditionally expressed short hairpin RNA targeting these lncRNAs in castration-resistant prostate cancer cell lines strongly suppressed tumour xenograft growth in vivo. Together, these results indicate that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumours.


Assuntos
RNA Longo não Codificante/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional/genética , Regulação para Cima/genética , Animais , Castração , Linhagem Celular Tumoral , Proliferação de Células , Elementos Facilitadores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo
15.
Nature ; 498(7455): 516-20, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23728302

RESUMO

The functional importance of gene enhancers in regulated gene expression is well established. In addition to widespread transcription of long non-coding RNAs (lncRNAs) in mammalian cells, bidirectional ncRNAs are transcribed on enhancers, and are thus referred to as enhancer RNAs (eRNAs). However, it has remained unclear whether these eRNAs are functional or merely a reflection of enhancer activation. Here we report that in human breast cancer cells 17ß-oestradiol (E2)-bound oestrogen receptor α (ER-α) causes a global increase in eRNA transcription on enhancers adjacent to E2-upregulated coding genes. These induced eRNAs, as functional transcripts, seem to exert important roles for the observed ligand-dependent induction of target coding genes, increasing the strength of specific enhancer-promoter looping initiated by ER-α binding. Cohesin, present on many ER-α-regulated enhancers even before ligand treatment, apparently contributes to E2-dependent gene activation, at least in part by stabilizing E2/ER-α/eRNA-induced enhancer-promoter looping. Our data indicate that eRNAs are likely to have important functions in many regulated programs of gene transcription.


Assuntos
Elementos Facilitadores Genéticos/genética , Estrogênios/farmacologia , RNA não Traduzido/genética , Ativação Transcricional/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Humanos , Ligantes , Células MCF-7 , Conformação de Ácido Nucleico/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA não Traduzido/biossíntese , RNA não Traduzido/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Ativação Transcricional/genética , Coesinas
17.
Proc Natl Acad Sci U S A ; 112(5): 1380-5, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605944

RESUMO

Substantial evidence supports the hypothesis that enhancers are critical regulators of cell-type determination, orchestrating both positive and negative transcriptional programs; however, the basic mechanisms by which enhancers orchestrate interactions with cognate promoters during activation and repression events remain incompletely understood. Here we report the required actions of LIM domain-binding protein 1 (LDB1)/cofactor of LIM homeodomain protein 2/nuclear LIM interactor, interacting with the enhancer-binding protein achaete-scute complex homolog 1, to mediate looping to target gene promoters and target gene regulation in corticotrope cells. LDB1-mediated enhancer:promoter looping appears to be required for both activation and repression of these target genes. Although LDB1-dependent activated genes are regulated at the level of transcriptional initiation, the LDB1-dependent repressed transcription units appear to be regulated primarily at the level of promoter pausing, with LDB1 regulating recruitment of metastasis-associated 1 family, member 2, a component of the nucleosome remodeling deacetylase complex, on these negative enhancers, required for the repressive enhancer function. These results indicate that LDB1-dependent looping events can deliver repressive cargo to cognate promoters to mediate promoter pausing events in a pituitary cell type.


Assuntos
Corticotrofos/fisiologia , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Proteínas com Domínio LIM/fisiologia , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Knockout
18.
Nature ; 474(7351): 390-4, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21572438

RESUMO

Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer-promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.


Assuntos
Elementos Facilitadores Genéticos/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , RNA não Traduzido/genética , Receptores Androgênicos/metabolismo , Transcrição Gênica/genética , Sequência de Bases , Linhagem Celular Tumoral , Linhagem da Célula , Di-Hidrotestosterona/farmacologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma Humano/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/deficiência , Fator 3-alfa Nuclear de Hepatócito/genética , Histonas/metabolismo , Humanos , Calicreínas , Masculino , Antígeno Prostático Específico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(25): 9235-40, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24928520

RESUMO

Understanding the mechanisms by which compounds discovered using cell-based phenotypic screening strategies might exert their effects would be highly augmented by new approaches exploring their potential interactions with the genome. For example, altered androgen receptor (AR) transcriptional programs, including castration resistance and subsequent chromosomal translocations, play key roles in prostate cancer pathological progression, making the quest for identification of new therapeutic agents and an understanding of their actions a continued priority. Here we report an approach that has permitted us to uncover the sites and mechanisms of action of a drug, referred to as "SD70," initially identified by phenotypic screening for inhibitors of ligand and genotoxic stress-induced translocations in prostate cancer cells. Based on synthesis of a derivatized form of SD70 that permits its application for a ChIP-sequencing-like approach, referred to as "Chem-seq," we were next able to efficiently map the genome-wide binding locations of this small molecule, revealing that it largely colocalized with AR on regulatory enhancers. Based on these observations, we performed the appropriate global analyses to ascertain that SD70 inhibits the androgen-dependent AR program, and prostate cancer cell growth, acting, at least in part, by functionally inhibiting the Jumonji domain-containing demethylase, KDM4C. Global location of candidate drugs represents a powerful strategy for new drug development by mapping genome-wide location of small molecules, a powerful adjunct to contemporary drug development strategies.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos , Linhagem Celular Tumoral , Análise Mutacional de DNA/métodos , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Translocação Genética
20.
Nature ; 466(7305): 508-12, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20622854

RESUMO

While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histona Desmetilases/química , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Metilação , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA