Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 153(16): 161102, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138408

RESUMO

In this paper, we introduce a new strategy for improving the efficiency of upconversion emissions based on triplet-triplet exciton annihilation (TTA-UC) in the solid state. We designed a ternary blend system consisting of a triplet sensitizer (TS), an exciton-transporting host polymer, and a small amount of an annihilator in which the triplet-state energies of the TS, host, and annihilator decrease in this order. The key idea underpinning this concept involves first transferring the triplet excitons generated by the TS to the host and then to the annihilator, driven by the cascaded triplet energy landscape. Because of the small annihilator blend ratio, the local density of triplet excitons in the annihilator domain is higher than those in conventional binary TS/annihilator systems, which is advantageous for TTA-UC because TTA is a density-dependent bimolecular reaction. We tracked the triplet exciton dynamics in the ternary blend film by transient absorption spectroscopy. Host triplet excitons are generated through triplet energy transfer from the TS following intersystem crossing in the TS. These triplet excitons then diffuse in the host domain and accumulate in the annihilator domain. The accumulated triplet excitons undergo TTA to generate singlet excitons that are higher in energy than the excitation source, resulting in UC emission. Based on the excitation-intensity and blend-ratio dependences of TTA-UC, we found that our concept has a positive impact on accelerating TTA.

2.
Chemphyschem ; 20(20): 2683-2688, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31077528

RESUMO

Recently, ternary blend polymer solar cells have attracted great attention to improve a short-circuit current density (JSC ) effectively, because complementary absorption bands can harvest the solar light over a wide wavelength range from visible to near-IR region. Interestingly, some ternary blend solar cells have shown improvements not only in JSC but also in fill factor (FF). Previously, we also reported that a ternary blend solar cell based on a low-bandgap polymer (PTB7-Th), a wide-bandgap polymer (PDCBT), and a fullerene derivative (PCBM) exhibited a higher FF than their binary analogues. Herein, we study charge transport in PTB7-Th/PDCBT/PCBM ternary blend films to address the origin of the improvement in FF. We found that hole polarons are located in PTB7-Th domains and their mobility is enhanced in the ternary blend film.

3.
Phys Chem Chem Phys ; 20(17): 12193-12199, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29683467

RESUMO

Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC71BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.

4.
J Am Chem Soc ; 138(32): 10265-75, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27448181

RESUMO

The development of semiconducting polymers is imperative to improve the performance of polymer-based solar cells (PSCs). In this study, new semiconducting polymers based on naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NTz), PNTz4TF2 and PNTz4TF4, having 3,3'-difluoro-2,2'-bithiophene and 3,3',4,4'-tetrafluoro-2,2'-bithiophene, respectively, are designed and synthesized. These polymers possess a deeper HOMO energy level than their counterpart, PNTz4T, which results in higher open-circuit voltages in solar cells. This concequently reduces the photon energy loss that is one of the most important issues surrounding PSCs. The PNTz4TF4 cell exhibits up to 6.5% power conversion efficiency (PCE), whereas the PNTz4TF2 cell demonstrates outstanding device performance with as high as 10.5% PCE, which is quite high for PSCs. We further discuss the performances of the PSCs based on these polymers by correlating the charge generation and recombination dynamics with the polymer structure and ordering structure. We believe that the results provide new insights into the design of semiconducting polymers and that there is still much room for improvement of PSC efficiency.

5.
J Am Chem Soc ; 137(51): 15980-3, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26654295

RESUMO

Excited-state dynamics in poly[4,6-(dodecyl-thieno[3,4-b]thiophene-2-carboxylate)-alt-2,6-(4,8-dioctoxylbenzo[1,2-b:4,5-b]dithiophene)] (PTB1) was studied by transient absorption spectroscopy. Upon photoexcitation at 400 nm, an additional transient species is promptly generated along with singlet excitons and survives up to nanoseconds, while singlet excitons disappear completely. In order to assign the long-lived species, we measured transient absorption spectra over the wide spectral range from 900 to 2500 nm. As a result, we found that the long-lived species is ascribed not to polarons but to triplet excitons, which is formed through the ultrafast singlet fission (SF). We discuss the ultrafast SF mechanism in push-pull low-bandgap polymer PTB1 films on the basis of the excited-state dynamics under various excitation wavelengths and intensities.

6.
Chemphyschem ; 16(6): 1263-7, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25598451

RESUMO

Efficient exciton collection at charge-generation sites is one of the key requirements for the improvement in power conversion efficiency (PCE) of organic solar cells, because only excitons arriving at a donor/acceptor interface can be dissociated into free charge carriers. We evaluated the effective diffusion length in poly(3-hexylthiophene) (P3HT) by using donor/acceptor bilayers with two different exciton-quenching acceptors. One is an insoluble fullerene polymer (p-PCBVB), which is an efficient electron-accepting material with negligible absorption in the visible region. The other is a low-bandgap polymer, poly[(4,4-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl], (PSBTBT). This polymer has a large absorption band in the near-IR region, which overlaps well with the emission band of P3HT. The effective diffusion length of P3HT excitons is evaluated to be 15 nm for P3HT/p-PCBVB bilayers and improved to 30 nm for P3HT/PSBTBT bilayers. This improvement is ascribed to long-range energy transfer from P3HT to PSBTBT. This finding suggests that the effective diffusion length of P3HT excitons can be increased through long-range energy transfer by incorporating PSBTBT into P3HT/PCBM blends.

7.
Phys Chem Chem Phys ; 17(40): 27217-24, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26418363

RESUMO

We have designed highly efficient ternary blend solar cells based on a wide-bandgap crystalline polymer, poly(3-hexylthiophene) (P3HT), and a low-bandgap polymer, poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2'3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT), and a fullerene derivative (PCBM). By using highly crystalline P3HT, high fill factors were obtained even for ternary blend solar cells, suggesting efficient charge transport due to large P3HT crystalline domains. In such large crystalline domains, some P3HT excitons could not diffuse into the interface with PCBM but can be collected in PSBTBT domains by efficient energy transfer because of large spectral overlap between the P3HT fluorescence and the PSBTBT absorption. Consequently, all the P3HT excitons can contribute to the photocurrent generation at the P3HT/PCBM interface and/or PSBTBT domains mixed with PCBM in the ternary blends. As a result, P3HT/PSBTBT/PCBM ternary blend solar cells exhibit a power conversion efficiency of 5.6%, which is even higher than those of both individual binary devices of P3HT/PCBM and PSBTBT/PCBM.

8.
Phys Chem Chem Phys ; 16(38): 20338-46, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24980903

RESUMO

Charge generation and recombination dynamics in a blend film of a crystalline low-bandgap polymer, poly[(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT), and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were studied by transient absorption spectroscopy. Upon photoexcitation of the PSBTBT absorption band at 800 nm, singlet excitons were promptly generated, and then rapidly converted into polarons in a few picoseconds. We found that there are two different polarons in PSBTBT: one is ascribed to polarons generated in the disorder phase and the other is ascribed to polarons in the crystalline phase. On a time scale of nanoseconds, ∼50% of polarons in the disorder phase recombined geminately to the ground state. On the other hand, such geminate recombination was negligible for polarons in the crystalline phase. As a result, the overall charge dissociation efficiency is as high as ∼75% for PSBTBT/PCBM blend films. On the basis of these analyses, we discuss the role of polymer crystallinity in the charge-carrier generation in organic solar cells.

9.
ACS Appl Mater Interfaces ; 16(3): 3735-3743, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38192099

RESUMO

Thiazole, as a family of five-membered heteroaromatic rings, is an interesting building unit that can play a role in coplanarizing the backbone as well as deepening the HOMO energy level, which is beneficial for the design of π-conjugated polymers for the photoactive materials in organic photovoltaics (OPVs). Here, we designed and synthesized π-conjugated polymers with simple chemical structures, which consist of 2,2'-bithiazole or 5,5'-bithiazole and alkylthiophenes as the polymer backbone. In fact, the polymers can be easily synthesized in much fewer steps compared to the typical high-performance polymers based on fused heteroaromatic rings. Interestingly, PTN5 exhibited a markedly higher ordered structure than PTN2. This was likely ascribed to the more coplanar and rigid backbone of PTN5 than that of PTN2 originating in the effectively arranged S···N interaction. As a result, the nonfullerene photovoltaic cell based on PTN5 showed a PCE of 12.2%, which was much higher than the cell based on PTN2 (4.3%) and was high for the polymers consisting of only nonfused rings. These results demonstrate that thiazole-based polymers are promising photoactive materials for OPVs and emphasize the importance of careful molecular design utilizing noncovalent interactions.

10.
Chem Sci ; 15(17): 6349-6362, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699251

RESUMO

Careful control of electronic properties, structural order, and solubility of π-conjugated polymers is central to the improvement of organic photovoltaic (OPV) performance. In this work, we designed and synthesized a series of naphthobisthiadiazole-quaterthiophene copolymers by systematically replacing the alkyl groups with ester groups and changing the position of the fluorine groups in the quaterthiophene moiety. These alterations lowered the HOMO and LUMO energy levels and systematically varied the combination of intramolecular noncovalent interactions such as O⋯S and F⋯S interactions in the backbone. More importantly, although the introduction of such noncovalent interactions often lowers the solubility owing to the interlocking of backbone linkages, we found that careful design of the noncovalent interactions afforded polymers with relatively high solubility and high crystallinity at the same time. As a result, the power conversion efficiency of OPV cells that used fullerene (PC61BM) and nonfullerene (Y12) as the acceptor was improved. Our work offers important information for the development of high-performance π-conjugated polymers for OPVs.

11.
J Phys Chem A ; 117(33): 7776-85, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23905591

RESUMO

Formation dynamics of intramolecular excimer in dioxa[3.3](3,6)carbazolophane (CzOCz) was studied by time-resolved spectroscopic methods and computational calculations. In the ground state, the most stable conformer in CzOCz is the anti-conformation where two carbazole rings are in antiparallel alignment. No other isomers were observed even after the solution was heated up to 150 °C, although three characteristic isomers were found by the molecular mechanics calculation: the first is the anti-conformer, the second is the syn-conformer where two carbazole rings are stacked in the same direction, and the third is the int-conformer where two carbazole rings are aligned in an edge-to-face geometry. Because of the anti-conformation, the interchromophoric interaction in CzOCz is negligible in the ground state. Nonetheless, the intramolecular excimer in CzOCz was dynamically formed in an acetonitrile (MeCN) solution, indicating strong interchromophoric interaction and the isomerization from the anti- to syn-conformation in the excited state. The excimer formation in CzOCz is more efficient in polar solvents than in less polar solvents, suggesting the contribution of the charge transfer (CT) state to the excimer formation. The stabilization in the excited state is discussed in terms of molecular orbital interaction between two carbazole rings. The solvent-polarity-induced excimer formation is discussed in terms of the CT character in the int-conformation.

12.
J Phys Chem Lett ; 14(43): 9706-9712, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877625

RESUMO

The driving force of charge separation in the initial photovoltaic conversion process is theoretically investigated using ITIC, a nonfullerene acceptor material for organic photovoltaic devices. The density functional theory calculations show that the pseudo-Jahn-Teller (PJT) distortion of the S1 excimer state induces spontaneous symmetry-breaking charge separation between the identical ITIC molecules even without the asymmetry of the surrounding environment. The strong PJT effect arises from the vibronic coupling between the pseudodegenerate S1 and S2 excited states with different irreducible representations (irreps), i.e., Au for S1 and Ag for S2, via the asymmetric vibrational mode with the Au irrep. The vibrational mode responsible for the spontaneous polarization, which is opposite in one ITIC monomer and the other, is the intramolecular C-C stretching vibration between the core IT and terminal IC units. These results suggest that controlling the PJT effect can improve the charge separation efficiency of the initial photovoltaic conversion process.

13.
Adv Sci (Weinh) ; 10(5): e2205682, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529702

RESUMO

In π $\upi$ -conjugated polymers, a highly ordered backbone structure and solubility are always in a trade-off relationship that must be overcome to realize highly efficient and solution-processable organic photovoltaics (OPVs). Here, it is shown that a π $\upi$ -conjugated polymer based on a novel thiazole-fused ring, thieno[2',3':5,6]benzo[1,2-d:4,3-d']bisthiazole (TBTz) achieves both high backbone order and high solubility due to the structural feature of TBTz such as the noncovalent interlocking of the thiazole moiety, the rigid and bent-shaped structure, and the fused alkylthiophene ring. Furthermore, based on the electron-deficient nature of these thiazole-fused rings, the polymer exhibits deep HOMO energy levels, which lead to high open-circuit voltages (VOC s) in OPV cells, even without halogen substituents that are commonly introduced into high-performance polymers. As a result, when the polymer is combined with a typical nonfullerene acceptor Y6, power conversion efficiencies of reaching 16% and VOC s of more than 0.84 V are observed, both of which are among the top values reported so far for "halogen-free" polymers. This study will serve as an important reference for designing π $\upi$ -conjugated polymers to achieve highly efficient and solution-processable OPVs.

14.
Ambio ; 41 Suppl 2: 132-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434439

RESUMO

The photovoltaic conversion efficiency for near-infrared (NIR) sunlight is improved successfully by dye sensitization of bulk heterojunction polymer solar cells, in which the active layer was prepared by a ternary blend of poly(3-hexylthiophene), a fullerene derivative (1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene), and an NIR dye, silicon phthalocyanine bis(trihexylsilyl oxide). The mechanism of the NIR-dye sensitization is studied by femtosecond transient absorption spectroscopy.


Assuntos
Corantes/química , Fármacos Fotossensibilizantes/química , Polímeros/química , Energia Solar , Fulerenos/química , Indóis/química , Compostos de Organossilício/química , Análise Espectral , Tiofenos/química
15.
Ambio ; 41 Suppl 2: 135-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434440

RESUMO

A blend of regioregular poly(3-hexylthiophene) (P3HT) and poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2), which has the potential for polymer solar cells application, was prepared for current mode atomic force microscopy (C-AFM) measurements in this study. Phase-separated domains and the local electrical characteristics of P3HT/P(NDI2OD-T2) blends were investigated by the C-AFM.


Assuntos
Microscopia de Força Atômica , Polímeros/química , Energia Solar , Tiofenos/química
16.
ACS Appl Mater Interfaces ; 13(33): 39322-39330, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374522

RESUMO

One of the most challenging issues facing the organic photovoltaic community is to realize a high fill factor (FF) even with thick active layers. This is because the thick active layer is beneficial for photon absorption but makes charge collection difficult, which is primarily restricted by nongeminate recombination in solar cells. In this work, we have studied nongeminate recombination in four kinds of polymer solar cells based on blends of donor-conjugated polymers with different crystallinities and acceptor-conjugated polymers with a naphthalene diimide unit by using transient photovoltage and photocurrent techniques. As a result, we find that nongeminate recombination is considerably suppressed with an increasing degree of crystallinity of donor polymers, leading to a high FF of more than 0.6 even with an active layer thickness of 300 nm. The origin of such a phenomenon is further discussed in terms of variations in the states of mixed phases with a cascaded energy structure between crystalline domains and amorphous domains evaluated by conductive atomic force microscopy.

17.
ACS Appl Mater Interfaces ; 13(29): 34357-34366, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254768

RESUMO

Herein, we study the origin of differences in open-circuit voltage (VOC) for polymer:fullerene solar cells employing highly crystalline conjugated polymers (PTzBT) based on the same thiophene-thiazolothiazole backbone with different side chains. By analyzing the temperature dependence of VOC and cyclic voltammogram, we find that the difference in VOC originates in the different cascaded energy structures for the highest occupied molecular orbital (HOMO) levels in the interfacial mixed phase. Furthermore, we find that this is due to the stabilization of HOMO caused by the different branching of side chains on the basis of density functional theory calculation. Finally, we discuss the molecular design strategy based on side-chain engineering for ideal interfacial cascaded energy structures leading to higher VOC and photocurrent simultaneously.

18.
Dalton Trans ; 51(1): 74-84, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34881749

RESUMO

Development of novel near-infrared (NIR) emitters is essential for satisfying the growing demands of advancing optical telecommunication and medical technology. We synthesized elemental skeletons composed of robust π-conjugated systems including two boron-fused azo groups, which showed an intense emission in the red or near-infrared (NIR) region both in solution and solid states. Two types of bisboron complexes with different aromatic linkers showed emission properties with larger bathochromic shifts and emission efficiencies in solution than the corresponding monoboron complex. Transient absorption spectroscopy disclosed that the inferior optical properties of the monoboron complex can be attributed to fast nonradiative deactivation accompanied by a large structural relaxation after photoexcitation. The expanded π-conjugated system through multiple boron-fused azo groups can contribute to rigid molecular skeletons followed by improved emission properties. Moreover, the anti-form of the bisboron complex with fluorine groups in the opposite directions to the π-plane exhibited crystallization-induced emission enhancement in the NIR region. The molecular design by using multiple boron-fused azo groups is expected to be a critical strategy for creating novel NIR emitters.

19.
ACS Appl Mater Interfaces ; 13(47): 56420-56429, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783522

RESUMO

Achieving both the backbone order and solubility of π-conjugated polymers, which are often in a trade-off relationship, is imperative for maximizing the performance of organic solar cells. Here, we studied three different π-conjugated polymers based on thiazolothiazole (PSTz1 and POTz1) and benzobisthiazole (PNBTz1) that were combined with a benzodithiophene unit in the backbone, where PNBTz1 was newly synthesized. Because of the steric hindrance between the side chains located on neighboring heteroaromatic rings, POTz1 had a much less coplanar backbone than PSTz1 in which such a steric hindrance is absent. However, POTz1 showed higher photovoltaic performance in solar cells that used Y6 as the acceptor material. This was likely due to the significantly higher solubility of POTz1 than PSTz1, resulting in a better morphology. Interestingly, PNBTz1 was found to have markedly higher backbone coplanarity than POTz1, despite having similar steric hindrance between the side chains, most likely owing to the more extended π-electron system, whereas PNBTz1 had good solubility comparable to POTz1. As a result, PNBTz1 exhibited higher photovoltaic performance than POTz1 in the Y6-based cells: specifically, the fill factor was significantly enhanced. Our results indicate that the backbone order and solubility can be achieved by the careful molecular design, which indeed leads to higher photovoltaic performance.

20.
ACS Appl Mater Interfaces ; 13(33): 39178-39185, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34379385

RESUMO

This work reports strategies for improving the power conversion efficiency (PCE) by capitalizing on temporal changes through the storage effect and immediate improvements by interface passivation. It is demonstrated that both strategies can be combined as shown by PCE improvement in passivated perovskite solar cells (PSCs) upon ambient storage because of trap density reduction. By analyzing the dominant charge recombination process, we find that lead-related traps in perovskite bulk, rather than at the surface, are the recombination centers in both as-fabricated and ambient-stored passivated PSCs. This emphasizes the necessity to reduce intrinsic defects in the perovskite bulk. Furthermore, storage causes temporal changes in band alignment even in passivated PSCs, contributing to PCE improvement. Building on these findings, composition engineering was employed to produce further immediate PCE improvements because of defect reduction in the bulk, achieving a PCE of 22.2%. These results show that understanding the dominant recombination mechanisms within a PSC is important to inform strategies for producing immediate and temporal PCE enhancements either by interface passivation, storage, composition engineering, or a combination of them all to fabricate highly efficient PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA