Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(50): 22523-22530, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32790890

RESUMO

19 F magnetic resonance (MR) based detection coupled with well-designed inorganic systems shows promise in biological investigations. Two proof-of-concept inorganic probes that exploit a novel mechanism for 19 F MR sensing based on converting from low-spin (S=0) to high-spin (S=1) Ni2+ are reported. Activation of diamagnetic NiL1 and NiL2 by light or ß-galactosidase, respectively, converts them into paramagnetic NiL0 , which displays a single 19 F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin-state switch is effective for sensing light or enzyme expression in live cells using 19 F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for 19 F MR based biosensing.

2.
MAGMA ; 32(1): 89-96, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30178207

RESUMO

OBJECTIVES: Our aim was to demonstrate the potential of exploiting simultaneous changes in coordination geometry and spin state in fluorinated Ni(II) complexes as an avenue for 19F magnetic-resonance (MR)-based pH sensing. MATERIALS AND METHODS: Crystal structures were studied using an Agilent Technologies SuperNova Dual Source diffractometer. Solution magnetic moment was determined using Evan's method. MR images were collected on a 7.0-T MR scanner equipped with a quadrature 19F volume coil. RESULTS: NiL1 and NiL2 were synthesized; crystallographic and spectroscopic data supported NiL1 as being diamagnetic and NiL2 as being paramagnetic. In aqueous solution, ligand dissociation from Ni(II) center was observed for both complexes at around pH 6, precluding their use as reversible pH sensors. The two complexes have distinct 19F nuclear magnetic resonance (NMR) signals in terms of both chemical shift and relaxation times, and selective imaging of the two complexes was achieved with no signal interference using two 19F MRI pulse sequences. CONCLUSION: The significant difference in the chemical shift and relaxation times between NiL1 and NiL2 allowed selective imaging of these species using 19F MRI. While NiL1 and NiL2 were not stable to acidic environments, this report lays the framework for development of improved ligand scaffolds that stably coordinate Ni(II) in acidic aqueous solution and act as agents for ratiometric pH mapping by 19F MRI.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/instrumentação , Imagem por Ressonância Magnética de Flúor-19/métodos , Flúor/química , Níquel/química , Simulação por Computador , Cobre , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Concentração de Íons de Hidrogênio , Ligantes , Magnetismo , Metanol , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA