Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Oral Pathol Med ; 53(2): 150-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38291254

RESUMO

BACKGROUND: Psychological stress is associated with changes in salivary flow and composition. However, studies to show the effect of psychological stress on the transcriptome of the salivary gland are limited. This study aims to perform a transcriptomic analysis of the submandibular gland under psychological stress using a chronic restraint stress model of rats. METHODS: Sprague-Dawley rats were divided into stress groups and control groups. Psychological stress was induced in the stress group rats by enclosing them in a plastic tube for 4 h daily over 6 weeks. RNA sequencing was performed on RNA extracted from the submandibular gland. The differentially expressed genes were identified, and the genes of interest were further validated using qRT-PCR, immunofluorescence, and western blot. RESULTS: A comparison between control and stress groups showed 45 differentially expressed genes. The top five altered genes in RNA sequencing data showed similar gene expression in qRT-PCR validation. The most downregulated gene in the stress group, FosB, was a gene of interest and was further validated for its protein-level expression using immunofluorescence and western blot. The genesets for gene ontology cellular component, molecular function, and KEGG showed that pathways related to ribosome biosynthesis and function were downregulated in the stress group compared to the control. CONCLUSION: Psychological stress showed transcriptomic alteration in the submandibular gland. The findings may be important in understanding stress-related oral diseases.


Assuntos
Glândulas Salivares , Glândula Submandibular , Ratos , Animais , Ratos Sprague-Dawley , Glândulas Salivares/metabolismo , Perfilação da Expressão Gênica , RNA/metabolismo
2.
Clin Pediatr Endocrinol ; 33(1): 12-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299173

RESUMO

Although KCNJ11 mutation is the main cause of neonatal diabetes mellitus, reports of maturity-onset diabetes in the young (MODY) related to KCNJ11 are rare. Here, we report a case of KCNJ11-MODY in a 12-yr-old Japanese female. Hyperglycemia was initially detected during a school urine screening program. Subsequent laboratory examinations revealed impaired insulin secretion; however, no islet autoantibodies were detected. Genetic testing of KCNJ11 revealed a novel heterozygous variant, c.153G>C, p.Glu51Asp. The patient's father had the same mutation and was diagnosed with diabetes at 46 yr of age. KCNJ11-MODY was suspected, and sulfonylurea administration resulted in adequate glycemic control in the patient. The American College of Medical Genetics and Genomics guidelines classify this variant as likely pathogenic, and the effectiveness of sulfonylureas supports its pathogenicity. The patient could be treated with 0.02-0.03 mg/kg/d of glibenclamide, as this mutation may be responsive to only a small amount of sulfonylurea. A detailed family history and sequencing of causative genes, including KCNJ11, may help diagnose diabetes in school-aged patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA