Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genomics ; 112(1): 442-458, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902755

RESUMO

The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.


Assuntos
Variação Genética , Adulto , Doenças Transmissíveis/genética , Demografia , Haplótipos , Humanos , Mutação INDEL , Farmacogenética , Fenótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Federação Russa/etnologia , Seleção Genética , Sequenciamento Completo do Genoma
2.
PLoS Genet ; 9(12): e1004023, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385924

RESUMO

There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is 48% in MXL, 25% in CLM, and 13% in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern American ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas 16 thousand years ago (kya), supports that the MXL Ancestors split 12.2kya, with a subsequent split of the ancestors to CLM and PUR 11.7kya. The model also features effective populations of 62,000 in Mexico, 8,700 in Colombia, and 1,900 in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.


Assuntos
Frequência do Gene/genética , Genética Populacional , Migração Humana , Indígenas Norte-Americanos/genética , População Negra/genética , Mapeamento Cromossômico , Exoma , Genoma Humano , Hispânico ou Latino/genética , Projeto Genoma Humano , Humanos , Americanos Mexicanos/genética , México , Porto Rico , Grupos Raciais/genética , População Branca/genética
3.
Kidney Int ; 88(4): 754-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25993319

RESUMO

A third of African Americans with sporadic focal segmental glomerulosclerosis (FSGS) or HIV-associated nephropathy (HIVAN) do not carry APOL1 renal risk genotypes. This raises the possibility that other APOL1 variants may contribute to kidney disease. To address this question, we sequenced all APOL1 exons in 1437 Americans of African and European descent, including 464 patients with biopsy-proven FSGS/HIVAN. Testing for association with 33 common and rare variants with FSGS/HIVAN revealed no association independent of strong recessive G1 and G2 effects. Seeking additional variants that might have been under selection by pathogens and could represent candidates for kidney disease risk, we also sequenced an additional 1112 individuals representing 53 global populations. Except for G1 and G2, none of the 7 common codon-altering variants showed evidence of selection or could restore lysis against trypanosomes causing human African trypanosomiasis. Thus, only APOL1 G1 and G2 confer renal risk, and other common and rare APOL1 missense variants, including the archaic G3 haplotype, do not contribute to sporadic FSGS and HIVAN in the US population. Hence, in most potential clinical or screening applications, our study suggests that sequencing APOL1 exons is unlikely to bring additional information compared to genotyping only APOL1 G1 and G2 risk alleles.


Assuntos
Nefropatia Associada a AIDS/genética , Apolipoproteínas/genética , Glomerulosclerose Segmentar e Focal/genética , Lipoproteínas HDL/genética , Polimorfismo de Nucleotídeo Único , Nefropatia Associada a AIDS/diagnóstico , Nefropatia Associada a AIDS/etnologia , Negro ou Afro-Americano/genética , Apolipoproteína L1 , Apolipoproteínas/sangue , Biópsia , Estudos de Casos e Controles , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/etnologia , Haplótipos , Interações Hospedeiro-Parasita , Humanos , Lipoproteínas HDL/sangue , Masculino , Fenótipo , Medição de Risco , Fatores de Risco , Análise de Sequência de DNA , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidade , Estados Unidos/epidemiologia , População Branca/genética
4.
J Neurodev Disord ; 16(1): 13, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539105

RESUMO

BACKGROUND: Global developmental delay or intellectual disability usually accompanies various genetic disorders as a part of the syndrome, which may include seizures, autism spectrum disorder and multiple congenital abnormalities. Next-generation sequencing (NGS) techniques have improved the identification of pathogenic variants and genes related to developmental delay. This study aimed to evaluate the yield of whole exome sequencing (WES) and neurodevelopmental disorder gene panel sequencing in a pediatric cohort from Ukraine. Additionally, the study computationally predicted the effect of variants of uncertain significance (VUS) based on recently published genetic data from the country's healthy population. METHODS: The study retrospectively analyzed WES or gene panel sequencing findings of 417 children with global developmental delay, intellectual disability, and/or other symptoms. Variants of uncertain significance were annotated using CADD-Phred and SIFT prediction scores, and their frequency in the healthy population of Ukraine was estimated. RESULTS: A definitive molecular diagnosis was established in 66 (15.8%) of the individuals. WES diagnosed 22 out of 37 cases (59.4%), while the neurodevelopmental gene panel identified 44 definitive diagnoses among the 380 tested patients (12.1%). Non-diagnostic findings (VUS and carrier) were reported in 350 (83.2%) individuals. The most frequently diagnosed conditions were developmental and epileptic encephalopathies associated with severe epilepsy and GDD/ID (associated genes ARX, CDKL5, STXBP1, KCNQ2, SCN2A, KCNT1, KCNA2). Additionally, we annotated 221 VUS classified as potentially damaging, AD or X-linked, potentially increasing the diagnostic yield by 30%, but 18 of these variants were present in the healthy population of Ukraine. CONCLUSIONS: This is the first comprehensive study on genetic causes of GDD/ID conducted in Ukraine. This study provides the first comprehensive investigation of the genetic causes of GDD/ID in Ukraine. It presents a substantial dataset of diagnosed genetic conditions associated with GDD/ID. The results support the utilization of NGS gene panels and WES as first-line diagnostic tools for GDD/ID cases, particularly in resource-limited settings. A comprehensive approach to resolving VUS, including computational effect prediction, population frequency analysis, and phenotype assessment, can aid in further reclassification of deleterious VUS and guide further testing in families.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Criança , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Testes Genéticos/métodos , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Estudos Retrospectivos , Epilepsia/complicações , Canais de Potássio Ativados por Sódio/genética , Proteínas do Tecido Nervoso/genética
5.
BMC Evol Biol ; 12: 237, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23217182

RESUMO

BACKGROUND: HIV-1 derives from multiple independent transfers of simian immunodeficiency virus (SIV) strains from chimpanzees to human populations. We hypothesized that human populations in west central Africa may have been exposed to SIV prior to the pandemic, and that previous outbreaks may have selected for genetic resistance to immunodeficiency viruses. To test this hypothesis, we examined the genomes of Biaka Western Pygmies, who historically resided in communities within the geographic range of the central African chimpanzee subspecies (Pan troglodytes troglodytes) that carries strains of SIV ancestral to HIV-1. RESULTS: SNP genotypes of the Biaka were compared to those of African human populations who historically resided outside the range of P. t. troglodytes, including the Mbuti Eastern Pygmies. Genomic regions showing signatures of selection were compared to the genomic locations of genes reported to be associated with HIV infection or pathogenesis. In the Biaka, a strong signal of selection was detected at CUL5, which codes for a component of the vif-mediated APOBEC3 degradation pathway. A CUL5 allele protective against AIDS progression was fixed in the Biaka. A signal of selection was detected at TRIM5, which codes for an HIV post-entry restriction factor. A protective mis-sense mutation in TRIM5 had the highest frequency in Biaka compared to other African populations, as did a protective allele for APOBEC3G, which codes for an anti-HIV-1 restriction factor. Alleles protective against HIV-1 for APOBEC3H, CXCR6 and HLA-C were at higher frequencies in the Biaka than in the Mbuti. Biaka genomes showed a strong signal of selection at TSG101, an inhibitor of HIV-1 viral budding. CONCLUSIONS: We found protective alleles or evidence for selection in the Biaka at a number of genes associated with HIV-1 infection or progression. Pygmies have also been reported to carry genotypes protective against HIV-1 for the genes CCR5 and CCL3L1. Our hypothesis that HIV-1 may have shaped the genomes of some human populations in West Central Africa appears to merit further investigation.


Assuntos
Etnicidade/genética , Predisposição Genética para Doença/genética , Infecções por HIV/genética , Seleção Genética , África Central , África Ocidental , Aminoidrolases/genética , Animais , Fatores de Restrição Antivirais , População Negra/etnologia , População Negra/genética , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Genótipo , Infecções por HIV/virologia , HIV-1/fisiologia , Antígenos HLA-C/genética , Interações Hospedeiro-Patógeno , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Pan troglodytes/virologia , Polimorfismo de Nucleotídeo Único , Receptores CXCR6 , Receptores de Quimiocinas/genética , Receptores Virais/genética , Análise de Sequência de DNA , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
6.
Genes (Basel) ; 13(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35885970

RESUMO

The availability of genome data provides a unique window into speciation mechanisms with virtually infinite amounts of information, providing a pathway for a better understanding of major evolutionary questions [...].


Assuntos
Especiação Genética , Genômica , Adaptação Fisiológica/genética , Evolução Biológica , Genoma/genética
7.
Gigascience ; 112022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085557

RESUMO

Documenting genome diversity is important for the local biomedical communities and instrumental in developing precision and personalized medicine. Currently, tens of thousands of whole-genome sequences from Europe are publicly available, but most of these represent populations of developed countries of Europe. The uneven distribution of the available data is further impaired by the lack of data sharing. Recent whole-genome studies in Eastern Europe, one in Ukraine and one in Russia, demonstrated that local genome diversity and population structure from Eastern Europe historically had not been fully represented. An unexpected wealth of genomic variation uncovered in these studies was not so much a consequence of high variation within their population, but rather due to the "pioneer advantage." We discovered more variants because we were the first to prospect in the Eastern European genome pool. This simple comparison underscores the importance of removing the remaining geographic genome deserts from the rest of the world map of the human genome diversity.


Assuntos
Genoma Humano , Genômica , Europa (Continente) , Humanos , Disseminação de Informação , Medicina de Precisão
8.
GigaByte ; 2022: gigabyte73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36824507

RESUMO

The mitochondrial genome of the long-spined black sea urchin, Diadema antillarum, was sequenced using Illumina next-generation sequencing technology. The complete mitogenome is 15,708 bp in length, containing two rRNA, 22 tRNA and 13 protein-coding genes, plus a noncoding control region of 133 bp. The nucleotide composition is 18.37% G, 23.79% C, 26.84% A and 30.99% T. The A + T bias is 57.84%. Phylogenetic analysis based on 12 complete mitochondrial genomes of sea urchins, including four species of the family Diadematidae, supported familial monophyly; however, the two Diadema species, D. antillarum and D. setosum were not recovered as sister taxa.

9.
Sci Rep ; 12(1): 515, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017609

RESUMO

Since the first Spanish settlers brought horses to America centuries ago, several local varieties and breeds have been established in the New World. These were generally a consequence of the admixture of the different breeds arriving from Europe. In some instances, local horses have been selectively bred for specific traits, such as appearance, endurance, strength, and gait. We looked at the genetics of two breeds, the Puerto Rican Non-Purebred (PRNPB) (also known as the "Criollo") horses and the Puerto Rican Paso Fino (PRPF), from the Caribbean Island of Puerto Rico. While it is reasonable to assume that there was a historic connection between the two, the genetic link between them has never been established. In our study, we started by looking at the genetic ancestry and diversity of current Puerto Rican horse populations using a 668 bp fragment of the mitochondrial DNA D-loop (HVR1) in 200 horses from 27 locations on the island. We then genotyped all 200 horses in our sample for the "gait-keeper" DMRT3 mutant allele previously associated with the paso gait especially cherished in this island breed. We also genotyped a subset of 24 samples with the Illumina Neogen Equine Community genome-wide array (65,000 SNPs). This data was further combined with the publicly available PRPF genomes from other studies. Our analysis show an undeniable genetic connection between the two varieties in Puerto Rico, consistent with the hypothesis that PRNPB horses represent the descendants of the original genetic pool, a mix of horses imported from the Iberian Peninsula and elsewhere in Europe. Some of the original founders of PRNRB population must have carried the "gait-keeper" DMRT3 allele upon arrival to the island. From this admixture, the desired traits were selected by the local people over the span of centuries. We propose that the frequency of the mutant "gait-keeper" allele originally increased in the local horses due to the selection for the smooth ride and other characters, long before the PRPF breed was established. To support this hypothesis, we demonstrate that PRNPB horses, and not the purebred PRPF, carry a signature of selection in the genomic region containing the DMRT3 locus to this day. The lack of the detectable signature of selection associated with the DMRT3 in the PRPF would be expected if this native breed was originally derived from the genetic pool of PRNPB horses established earlier and most of the founders already had the mutant allele. Consequently, selection specific to PRPF later focused on allels in other genes (including CHRM5, CYP2E1, MYH7, SRSF1, PAM, PRN and others) that have not been previously associated with the prized paso gait phenotype in Puerto Rico or anywhere else.


Assuntos
Cavalos , Animais
10.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37496156

RESUMO

Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades' worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery.


Assuntos
Conflitos Armados , Ciência , Humanos , Ucrânia
11.
Genes (Basel) ; 12(9)2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34573318

RESUMO

Genome assemblies are in the process of becoming an increasingly important tool for understanding genetic diversity in threatened species. Unfortunately, due to limited budgets typical for the area of conservation biology, genome assemblies of threatened species, when available, tend to be highly fragmented, represented by tens of thousands of scaffolds not assigned to chromosomal locations. The recent advent of high-throughput chromosome conformation capture (Hi-C) enables more contiguous assemblies containing scaffolds spanning the length of entire chromosomes for little additional cost. These inexpensive contiguous assemblies can be generated using Hi-C scaffolding of existing short-read draft assemblies, where N50 of the draft contigs is larger than 0.1% of the estimated genome size and can greatly improve analyses and facilitate visualization of genome-wide features including distribution of genetic diversity in markers along chromosomes or chromosome-length scaffolds. We compared distribution of genetic diversity along chromosomes of eight mammalian species, including six listed as threatened by IUCN, where both draft genome assemblies and newer chromosome-level assemblies were available. The chromosome-level assemblies showed marked improvement in localization and visualization of genetic diversity, especially where the distribution of low heterozygosity across the genomes of threatened species was not uniform.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos/genética , Espécies em Perigo de Extinção , Variação Genética , Animais , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
12.
Genes (Basel) ; 12(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924228

RESUMO

Amazon parrots (Amazona spp.) colonized the islands of the Greater Antilles from the Central American mainland, but there has not been a consensus as to how and when this happened. Today, most of the five remaining island species are listed as endangered, threatened, or vulnerable as a consequence of human activity. We sequenced and annotated full mitochondrial genomes of all the extant Amazon parrot species from the Greater Antillean (A. leucocephala (Cuba), A. agilis, A. collaria (both from Jamaica), A. ventralis (Hispaniola), and A. vittata (Puerto Rico)), A. albifrons from mainland Central America, and A. rhodocorytha from the Atlantic Forest in Brazil. The assembled and annotated mitogenome maps provide information on sequence organization, variation, population diversity, and evolutionary history for the Caribbean species including the critically endangered A. vittata. Despite the larger number of available samples from the Puerto Rican Parrot Recovery Program, the sequence diversity of the A. vittata population in Puerto Rico was the lowest among all parrot species analyzed. Our data support the stepping-stone dispersal and speciation hypothesis that has started approximately 3.47 MYA when the ancestral population arrived from mainland Central America and led to diversification across the Greater Antilles, ultimately reaching the island of Puerto Rico 0.67 MYA. The results are presented and discussed in light of the geological history of the Caribbean and in the context of recent parrot evolution, island biogeography, and conservation. This analysis contributes to understating evolutionary history and empowers subsequent assessments of sequence variation and helps design future conservation efforts in the Caribbean.


Assuntos
Amazona/classificação , DNA Mitocondrial/genética , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Amazona/genética , Animais , Brasil , Cuba , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Jamaica , Anotação de Sequência Molecular , Filogenia , Porto Rico
13.
Gigascience ; 10(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438729

RESUMO

BACKGROUND: The main goal of this collaborative effort is to provide genome-wide data for the previously underrepresented population in Eastern Europe, and to provide cross-validation of the data from genome sequences and genotypes of the same individuals acquired by different technologies. We collected 97 genome-grade DNA samples from consented individuals representing major regions of Ukraine that were consented for public data release. BGISEQ-500 sequence data and genotypes by an Illumina GWAS chip were cross-validated on multiple samples and additionally referenced to 1 sample that has been resequenced by Illumina NovaSeq6000 S4 at high coverage. RESULTS: The genome data have been searched for genomic variation represented in this population, and a number of variants have been reported: large structural variants, indels, copy number variations, single-nucletide polymorphisms, and microsatellites. To our knowledge, this study provides the largest to-date survey of genetic variation in Ukraine, creating a public reference resource aiming to provide data for medical research in a large understudied population. CONCLUSIONS: Our results indicate that the genetic diversity of the Ukrainian population is uniquely shaped by evolutionary and demographic forces and cannot be ignored in future genetic and biomedical studies. These data will contribute a wealth of new information bringing forth a wealth of novel, endemic and medically related alleles.


Assuntos
Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Genoma , Genômica , Humanos , Ucrânia
14.
BMC Genomics ; 10: 51, 2009 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-19171065

RESUMO

BACKGROUND: Understanding structure and function of human genome requires knowledge of genomes of our closest living relatives, the primates. Nucleotide insertions and deletions (indels) play a significant role in differentiation that underlies phenotypic differences between humans and chimpanzees. In this study, we evaluated distribution, evolutionary history, and function of indels found by comparing syntenic regions of the human and chimpanzee genomes. RESULTS: Specifically, we identified 6,279 indels of 10 bp or greater in a ~33 Mb alignment between human and chimpanzee chromosome 22. After the exclusion of those in repetitive DNA, 1,429 or 23% of indels still remained. This group was characterized according to the local or genome-wide repetitive nature, size, location relative to genes, and other genomic features. We defined three major classes of these indels, using local structure analysis: (i) those indels found uniquely without additional copies of indel sequence in the surrounding (10 Kb) region, (ii) those with at least one exact copy found nearby, and (iii) those with similar but not identical copies found locally. Among these classes, we encountered a high number of exactly repeated indel sequences, most likely due to recent duplications. Many of these indels (683 of 1,429) were in proximity of known human genes. Coding sequences and splice sites contained significantly fewer of these indels than expected from random expectations, suggesting that selection is a factor in limiting their persistence. A subset of indels from coding regions was experimentally validated and their impacts were predicted based on direct sequencing in several human populations as well as chimpanzees, bonobos, gorillas, and two subspecies of orangutans. CONCLUSION: Our analysis demonstrates that while indels are distributed essentially randomly in intergenic and intronic genomic regions, they are significantly under-represented in coding sequences. There are substantial differences in representation of indel classes among genomic elements, most likely caused by differences in their evolutionary histories. Using local sequence context, we predicted origins and phylogenetic relationships of gene-impacting indels in primate species. These results suggest that genome plasticity is a major force behind speciation events separating the great ape lineages.


Assuntos
Cromossomos Humanos Par 22/genética , Evolução Molecular , Mutação INDEL , Pan troglodytes/genética , Animais , Genoma Humano , Humanos , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia
15.
Genes (Basel) ; 10(1)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654561

RESUMO

Islands have been used as model systems for studies of speciation and extinction since Darwin published his observations about finches found on the Galapagos. Amazon parrots inhabiting the Greater Antillean Islands represent a fascinating model of species diversification. Unfortunately, many of these birds are threatened as a result of human activity and some, like the Puerto Rican parrot, are now critically endangered. In this study we used a combination of de novo and reference-assisted assembly methods, integrating it with information obtained from related genomes to perform genome reconstruction of three amazon species. First, we used whole genome sequencing data to generate a new de novo genome assembly for the Puerto Rican parrot (Amazona vittata). We then improved the obtained assembly using transcriptome data from Amazona ventralis and used the resulting sequences as a reference to assemble the genomes Hispaniolan (A. ventralis) and Cuban (Amazona leucocephala) parrots. Finally, we, annotated genes and repetitive elements, estimated genome sizes and current levels of heterozygosity, built models of demographic history and provided interpretation of our findings in the context of parrot evolution in the Caribbean.


Assuntos
Espécies em Perigo de Extinção , Genoma , Papagaios/genética , Animais , Ilhas , Papagaios/classificação , Transcriptoma
16.
Int J Immunogenet ; 35(3): 255-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18479293

RESUMO

Hepatitis B virus (HBV) infection remains a serious global health problem despite the availability of a highly effective vaccine. Approximately 5% of HBV-infected adults develop chronic hepatitis B, which may result in liver cirrhosis or hepatocellular carcinoma. Variants of interleukin-10 (IL10) have been previously associated with chronic hepatitis B infection and progression to hepatocellular carcinoma. Single nucleotide polymorphisms (SNP; n = 42) from the IL10, IL19 and IL20 gene regions were examined for an association with HBV infection outcome, either chronic or recovered, in a nested case-control study of African Americans and European Americans. Among African Americans, three nominally statistically significant SNP associations in IL10, two in IL20, and one haplotype association were observed with different HBV infection outcomes (P = 0.005-0.04). A SNP (rs1518108) in IL20 deviated significantly from Hardy-Weinberg equilibrium in African Americans, with a large excess of heterozygotes in chronic HBV-infected cases (P = 0.0006), which suggests a strong genetic effect. Among European Americans, a nominally statistically significant SNP association in IL20 and an IL20 haplotype were associated with HBV recovery (P = 0.01-0.04). These results suggest that IL10 and IL20 gene variants influence HBV infection outcome and encourage the pursuit of further studies of these cytokines in HBV pathogenesis.


Assuntos
Hepatite B Crônica/genética , Interleucina-10/genética , Interleucinas/genética , Polimorfismo de Nucleotídeo Único , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Progressão da Doença , Genótipo , Haplótipos , Humanos , População Branca/genética
17.
Cancers (Basel) ; 10(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400234

RESUMO

Breast cancer is the most common cause of cancer diagnosis in women and is responsible for considerable mortality among the women of Puerto Rico. However, there are few studies in Puerto Rico on the genetic factors influencing risk. To determine the contribution of pathogenic mutations in BRCA1 and BRCA2, we sequenced these genes in 302 cases from two separate medical centers, who were not selected for age of onset or family history. We identified nine cases that are carriers of pathogenic germline mutation. This represents 2.9% of unselected cases and 5.6% of women meeting National Comprehensive Cancer Network (NCCN) criteria for BRCA testing. All of the identified pathogenic mutations were in the BRCA2 gene and the most common mutation is the p.Glu1308Ter (E1308X) mutation in BRCA2 found in eight out of nine cases, representing 89% of the pathogenic carriers. The E1308X mutation has been identified in breast and ovarian cancer families in Spain, and analysis of flanking DNA polymorphisms shows that all E1308X carriers occur on the same haplotype. This is consistent with BRCA2 E1308X being a founder mutation for the Puerto Rican population. These results will contribute to better inform genetic screening and counseling of breast and ovarian cancer cases in Puerto Rico and Puerto Rican populations in mainland United States.

18.
Gigascience ; 7(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718205

RESUMO

Solenodons are insectivores that live in Hispaniola and Cuba. They form an isolated branch in the tree of placental mammals that are highly divergent from other eulipothyplan insectivores The history, unique biology, and adaptations of these enigmatic venomous species could be illuminated by the availability of genome data. However, a whole genome assembly for solenodons has not been previously performed, partially due to the difficulty in obtaining samples from the field. Island isolation and reduced numbers have likely resulted in high homozygosity within the Hispaniolan solenodon (Solenodon paradoxus). Thus, we tested the performance of several assembly strategies on the genome of this genetically impoverished species. The string graph-based assembly strategy seemed a better choice compared to the conventional de Bruijn graph approach due to the high levels of homozygosity, which is often a hallmark of endemic or endangered species. A consensus reference genome was assembled from sequences of 5 individuals from the southern subspecies (S. p. woodi). In addition, we obtained an additional sequence from 1 sample of the northern subspecies (S. p. paradoxus). The resulting genome assemblies were compared to each other and annotated for genes, with an emphasis on venom genes, repeats, variable microsatellite loci, and other genomic variants. Phylogenetic positioning and selection signatures were inferred based on 4,416 single-copy orthologs from 10 other mammals. We estimated that solenodons diverged from other extant mammals 73.6 million years ago. Patterns of single-nucleotide polymorphism variation allowed us to infer population demography, which supported a subspecies split within the Hispaniolan solenodon at least 300 thousand years ago.


Assuntos
Evolução Biológica , Sequência Conservada/genética , Espécies em Perigo de Extinção , Ilhas , Mamíferos/genética , Análise de Sequência de DNA/métodos , Animais , Cuba , Genoma , Heterozigoto , Especificidade da Espécie
19.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 662-670, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159724

RESUMO

Solenodons are insectivores found only in Hispaniola and Cuba, with a Mesozoic divergence date versus extant mainland mammals. Solenodons are the oldest lineage of living eutherian mammal for which a mitogenome sequence has not been reported. We determined complete mitogenome sequences for six Hispaniolan solenodons (Solenodon paradoxus) using next-generation sequencing. The solenodon mitogenomes were 16,454-16,457 bp long and carried the expected repertoire of genes. A mitogenomic phylogeny confirmed the basal position of solenodons relative to shrews and moles, with solenodon mitogenomes estimated to have diverged from those of other mammals ca. 78 Mya. Control region sequences of solenodons from the northern (n = 3) and southern (n = 5) Dominican Republic grouped separately in a network, with FST = 0.72 (p = 0.036) between north and south. This regional genetic divergence supports previous morphological and genetic reports recognizing northern (S. p. paradoxus) and southern (S. p. woodi) subspecies in need of separate conservation plans.


Assuntos
Eulipotyphla/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Animais , Eulipotyphla/genética , Evolução Molecular , Tamanho do Genoma , Genoma Mitocondrial , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA