Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 246: 118763, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863961

RESUMO

Relating brain dynamics acting on time scales that differ by at least an order of magnitude is a fundamental issue in brain research. The same is true for the observation of stable dynamical structures in otherwise highly non-stationary signals. The present study addresses both problems by the analysis of simultaneous resting state EEG-fMRI recordings of 53 patients with epilepsy. Confirming previous findings, we observe a generic and temporally stable average correlation pattern in EEG recordings. We design a predictor for the General Linear Model describing fluctuations around the stationary EEG correlation pattern and detect resting state networks in fMRI data. The acquired statistical maps are contrasted to several surrogate tests and compared with maps derived by spatial Independent Component Analysis of the fMRI data. By means of the proposed EEG-predictor we observe core nodes of known fMRI resting state networks with high specificity in the default mode, the executive control and the salience network. Our results suggest that both, the stationary EEG pattern as well as resting state fMRI networks are different expressions of the same brain activity. This activity is interpreted as the dynamics on (or close to) a stable attractor in phase space that is necessary to maintain the brain in an efficient operational mode. We discuss that this interpretation is congruent with the theoretical framework of complex systems as well as with the brain's energy balance.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Rede de Modo Padrão/fisiologia , Eletroencefalografia/métodos , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adolescente , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
2.
Sci Rep ; 14(1): 2072, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267468

RESUMO

Achalasia is a rare esophageal motility disorder for which the etiology is not fully understood. Evidence suggests that autoimmune inflammatory infiltrates, possibly triggered by a viral infection, may lead to a degeneration of neurons within the myenteric plexus. While the infection is eventually resolved, genetically susceptible individuals may still be at risk of developing achalasia. This study aimed to determine whether immunological and physiological networks differ between male and female patients with achalasia. This cross-sectional study included 189 preoperative achalasia patients and 500 healthy blood donor volunteers. Demographic, clinical, laboratory, immunological, and tissue biomarkers were collected. Male and female participants were evaluated separately to determine the role of sex. Correlation matrices were constructed using bivariate relationships to generate complex inferential networks. These matrices were filtered based on their statistical significance to identify the most relevant relationships between variables. Network topology and node centrality were calculated using tools available in the R programming language. Previous occurrences of chickenpox, measles, and mumps infections have been proposed as potential risk factors for achalasia, with a stronger association observed in females. Principal component analysis (PCA) identified IL-22, Th2, and regulatory B lymphocytes as key variables contributing to the disease. The physiological network topology has the potential to inform whether a localized injury or illness is likely to produce systemic consequences and the resulting clinical presentation. Here we show that immunological involvement in achalasia appears localized in men because of their highly modular physiological network. In contrast, in women the disease becomes systemic because of their robust network with a larger number of inter-cluster linkages.


Assuntos
Linfócitos B Reguladores , Acalasia Esofágica , Transtornos da Motilidade Esofágica , Humanos , Feminino , Masculino , Estudos Transversais , Doadores de Sangue
3.
PLoS One ; 19(2): e0297901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416704

RESUMO

Throughout the early stages of the COVID-19 pandemic in Mexico (August-December 2020), we closely followed a cohort of n = 100 healthcare workers. These workers were initially seronegative for Immunoglobulin G (IgG) antibodies against SARS-CoV-2, the virus that causes COVID-19, and maintained close contact with patients afflicted by the disease. We explored the database of demographic, physiological and laboratory parameters of the cohort recorded at baseline to identify potential risk factors for infection with SARS-CoV-2 at a follow-up evaluation six months later. Given that susceptibility to infection may be a systemic rather than a local property, we hypothesized that a multivariate statistical analysis, such as MANOVA, may be an appropriate statistical approach. Our results indicate that susceptibility to infection with SARS-CoV-2 is modulated by sex. For men, different physiological states appear to exist that predispose to or protect against infection, whereas for women, we did not find evidence for divergent physiological states. Intriguingly, male participants who remained uninfected throughout the six-month observation period, had values for mean arterial pressure and waist-to-hip ratio that exceeded the normative reference range. We hypothesize that certain risk factors that worsen the outcome of COVID-19 disease, such as being overweight or having high blood pressure, may instead offer some protection against infection with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , Feminino , COVID-19/epidemiologia , Pandemias/prevenção & controle , Fatores de Risco , Imunoglobulina G , Pessoal de Saúde , Anticorpos Antivirais
4.
Front Netw Physiol ; 2: 890906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36926063

RESUMO

Studying functional connectivity may generate clues to the maturational changes that occur in children, expressed by the dynamical organization of the functional network assessed by electroencephalographic recordings (EEG). In the present study, we compared the EEG functional connectivity pattern estimated by linear cross-correlations of the electrical brain activity of three groups of children (6, 8, and 10 years of age) while performing odd-ball tasks containing facial stimuli that are chosen considering their importance in socioemotional contexts in everyday life. On the first task, the children were asked to identify the sex of faces, on the second, the instruction was to identify the happy expressions of the faces. We estimated the stable correlation pattern (SCP) by the average cross-correlation matrix obtained separately for the resting state and the task conditions and quantified the similarity of these average matrices comparing the different conditions. The accuracy improved with higher age. Although the topology of the SCPs showed high similarity across all ages, the two older groups showed a higher correlation between regions associated with the attentional and face processing networks compared to the youngest group. Only in the youngest group, the similarity metric decreased during the sex condition. In general, correlation values strengthened with age and during task performance compared to rest. Our findings indicate that there is a spatially extended stable brain network organization in children like that reported in adults. Lower similarity scores between several regions in the youngest children might indicate a lesser ability to cope with tasks. The brain regions associated with the attention and face networks presented higher synchronization across regions with increasing age, modulated by task demands.

5.
Front Neurosci ; 13: 941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572110

RESUMO

The characterization of the functional network of the brain dynamics has become a prominent tool to illuminate novel aspects of brain functioning. Due to its excellent time resolution, such research is oftentimes based on electroencephalographic recordings (EEG). However, a particular EEG-reference might cause crucial distortions of the spatiotemporal interrelation pattern and may induce spurious correlations as well as diminish genuine interrelations originally present in the dataset. Here we investigate in which manner correlation patterns are affected by a chosen EEG reference. To this end we evaluate the influence of 7 popular reference schemes on artificial recordings derived from well controlled numerical test frameworks. In this respect we are not only interested in the deformation of spatial interrelations, but we test additionally in which way the time evolution of the functional network, estimated via some bi-variate interrelation measures, gets distorted. It turns out that the median reference as well as the global average show the best performance in most situations considered in the present study. However, if a collective brain dynamics is present, where most of the signals get correlated, these schemes may also cause crucial deformations of the functional network, such that the parallel use of different reference schemes seems advisable.

6.
Brain Connect ; 8(8): 457-474, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198323

RESUMO

Since the discovery of electrical activity of the brain, electroencephalographic (EEG) recordings constitute one of the most popular techniques of brain research. However, EEG signals are highly nonstationary and one should expect that averages of the cross-correlation coefficient, which may take positive and negative values with equal probability, (almost) vanish when estimated over long data segments. Instead, we found that the average zero-lag cross-correlation matrix estimated with a running window over the whole night of sleep EEGs, or of resting state during eyes-open and eyes-closed conditions of healthy subjects shows a characteristic correlation pattern containing pronounced nonzero values. A similar correlation structure has already been encountered in scalp EEG signals containing focal onset seizures. Therefore, we conclude that this structure is independent of the physiological state. Because of its pronounced similarity across subjects, we believe that it depicts a generic feature of the brain dynamics. Namely, we interpret this pattern as a manifestation of a dynamical ground state of the brain activity, necessary to preserve an efficient operational mode, or, expressed in terms of dynamical system theory, we interpret it as a "shadow" of the evolution on (or close to) an attractor in phase space. Nonstationary dynamical aspects of higher cerebral processes should manifest in deviations from this stable pattern. We confirm this hypothesis through a correlation analysis of EEG recordings of 10 healthy subjects during night sleep, 20 recordings of 9 epilepsy patients, and 42 recordings of 21 healthy subjects in resting state during eyes-open and eyes-closed conditions. In particular, we show that the estimation of deviations from the stationary correlation structures provides a more significant differentiation of physiological states and more homogeneous results across subjects.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia/patologia , Dinâmica não Linear , Adolescente , Adulto , Fatores Etários , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Rede Nervosa/fisiologia , Descanso/fisiologia , Sono/fisiologia , Vigília/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA