Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719742

RESUMO

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Aromáticos , Hidrocarbonetos Aromáticos/metabolismo , Tricloroetileno/metabolismo , Sulfonamidas/metabolismo
2.
Environ Sci Technol ; 57(38): 14237-14247, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695749

RESUMO

Interactions and nutrient exchanges among members of microbial communities are important for understanding functional relationships in environmental microbiology. We can begin to elucidate the nature of these complex systems by taking a bottom-up approach utilizing simplified, but representative, community members. Here, we assess the effects of a toxic stress event, the addition of arsenite (As(III)), on a syntrophic co-culture containing lactate-fermenting Desulfovibrio vulgaris Hildenborough and solvent-dechlorinating Dehalococcoides mccartyi strain 195. Arsenic and trichloroethene (TCE) are two highly prevalent groundwater contaminants in the United States, and the presence of bioavailable arsenic is of particular concern at remediation sites in which reductive dechlorination has been employed. While we previously showed that low concentrations of arsenite (As(III)) inhibit the keystone TCE-reducing microorganism, D. mccartyi, this study reports the utilization of physiological analysis, transcriptomics, and metabolomics to assess the effects of arsenic on the metabolisms, gene expression, and nutrient exchanges in the described co-culture. It was found that the presence of D. vulgaris ameliorated arsenic stress on D. mccartyi, improving TCE dechlorination under arsenic-contaminated conditions. Nutrient and amino acid export by D. vulgaris may be a stress-ameliorating exchange in this syntrophic co-culture under arsenic stress, based on upregulation of transporters and increased extracellular nutrients like sarcosine and ornithine. These results broaden our knowledge of microbial community interactions and will support the further development and implementation of robust bioremediation strategies at multi-contaminant sites.


Assuntos
Arsênio , Arsenitos , Tricloroetileno , Solventes , Ácido Láctico
3.
Environ Sci Technol ; 56(15): 10785-10797, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35852516

RESUMO

Per- and polyfluoroalkyl substances (PFAS), butyl carbitol, and corrosion inhibitors are components of aqueous film-forming foams (AFFFs). Volatile (neutral) fluorotelomerization (FT)- and electrochemical fluorination (ECF)-based PFAS, butyl carbitol, and organic corrosion inhibitors were quantified in 39 military specification (MilSpec), non-MilSpec, and alcohol resistant-AFFF concentrates (undiluted) from 1974 to 2010. Fluorotelomer alcohols were found only in FT-based AFFFs and N-methyl- and N-ethyl-perfluoroalkyl sulfonamides, and sulfonamido ethanols were found only in ECF-based AFFFs. Neutral PFAS and benzotriazole, 4-methylbenzotriazole, and 5-methybenzotriazole occurred at mg/L levels in the AFFFs, while butyl carbitol occurred at g/L levels. Neutral PFAS concentrations in indoor air due to vapor intrusion of a nearby undiluted AFFF release are estimated to be anywhere from 2 to >10 orders of magnitude higher than documented background indoor air concentrations. Estimated butyl carbitol and organic corrosion inhibitor concentrations were lower than and comparable to indoor concentrations recently measured, respectively. The wide range of neutral PFAS concentrations and Henry's law constants indicate that field, soil-gas measurements are needed to validate the estimations. Co-discharged butyl carbitol likely contributes to oxygen depletion in AFFF-impacted aquifers and may hinder the natural PFAS aerobic biotransformation. Organic corrosion inhibitors in AFFFs indicate that these are another source of corrosion inhibitors in the environment.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Aerossóis , Corrosão , Etilenoglicóis , Fluorocarbonos/análise , Gases , Água , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 56(22): 15478-15488, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257682

RESUMO

Sites impacted by aqueous film-forming foam (AFFF) contain co-contaminants that can stimulate biotransformation of polyfluoroalkyl substances. Here, we compare how microbial enrichments from AFFF-impacted soil amended with diethyl glycol monobutyl ether (found in AFFF), aromatic hydrocarbons (present in co-released fuels), acetate, and methane (substrates used or formed during bioremediation) impact the aerobic biotransformation of an AFFF-derived six-carbon electrochemical fluorination (ECF) precursor N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). We found that methane- and acetate-oxidizing cultures resulted in the highest yields of identifiable products (38 and 30%, respectively), including perfluorohexane sulfonamide (FHxSA) and perfluorohexane sulfonic acid (PFHxS). Using these data, we propose and detail a transformation pathway. Additionally, we examined chemical oxidation products of AmPr-FHxSA and FHxSA to provide insights on remediation strategies for AmPr-FHxSA. We demonstrate mineralization of these compounds using the sulfate radical and test their transformation during the total oxidizable precursor (TOP) assay. While perfluorohexanoic acid accounted for over 95% of the products formed, we demonstrate here for the first time two ECF-based precursors, AmPr-FHxSA and FHxSA, that produce PFHxS during the TOP assay. These findings have implications for monitoring poly- and perfluoroalkyl substances during site remediation and application of the TOP assay at sites impacted by ECF-based precursors.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Carbono , Poluentes Químicos da Água/análise , Água , Sulfanilamida , Sulfonamidas , Metano
5.
Environ Sci Technol ; 55(23): 15744-15753, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34748313

RESUMO

Poly- and perfluorinated alkyl substances (PFASs) frequently co-occur with fuel-derived contaminants because of the use of aqueous film-forming foam (AFFF). Biosparging is a common remediation technology that injects oxygen into the saturated zone to encourage aerobic biodegradation, thereby altering aquifer redox conditions and potentially facilitating the biotransformation of polyfluorinated substances. Between 136 and 280 pore volumes of nitrogen-sparged or oxygen-sparged artificial groundwater amended with toluene were pumped through four saturated, AFFF-impacted soil columns to assess impacts on PFAS release and transformation. Column effluents and soils were analyzed for PFASs by high-resolution mass spectrometry. Significantly higher concentrations of five PFASs eluted from O2-sparged columns compared to N2-sparged columns shortly after sparging was initiated. The mass fractions eluted of many zwitterionic, sulfonamide-based PFASs were higher in both sets of columns than unaltered, non-biostimulated columns. Mass balance calculations suggested the transformation of sulfonamide-based precursors to perfluorinated sulfonamides (i.e., perfluorohexanesulfonamide) in oxygen- and nitrogen-sparged columns: recoveries of perfluorinated sulfonamides were 158-235% for C3-C6 homologs but recoveries of several prominent sulfonamide-based zwitterions were low. For example, the recovery of n-carboxyethyldimethyl-ammoniopropyl perfluorohexanesulfonamide was 9-13%. These results suggest biosparging can enhance the transformation and release of PFASs in saturated soils, which has important implications for site characterization and remediation.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo , Água , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 51(22): 13327-13334, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29072907

RESUMO

2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14C-DNAN into the humin fraction. 14C-DNAN incorporation to the humin fraction was strongly correlated (R2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.


Assuntos
Anisóis , Solo , Radioisótopos de Carbono , Poluentes do Solo
7.
Environ Sci Technol ; 49(9): 5681-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25839647

RESUMO

Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.


Assuntos
Bactérias/metabolismo , Substâncias Explosivas/metabolismo , Microbiota , Nitrocompostos/metabolismo , Microbiologia do Solo , Triazóis/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental , Biotransformação , Nitrogênio/metabolismo
8.
J Hazard Mater ; 470: 134185, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579582

RESUMO

Microplastics (MPs) are abundant in aquatic systems. The ecological risks of MPs may arise from their physical features, chemical properties, and/or their ability to concentrate and transport other contaminants, such as per- and polyfluoroalkyl substances (PFAS). PFAS have been extracted from MPs found in natural waters. Still, there needs to be a mechanistic investigation of the effect of PFAS chemistry and water physicochemical properties on how PFAS partition onto secondary MPs. Here, we studied the influence of pH, natural organic matter (NOM), ionic strength, and temperature on the adsorption of PFAS on MPs generated from PET water bottles. The adsorption of PFAS to the MPs was thermodynamically spontaneous at 25 °C, based on Gibb's free energy (ΔG = -16 to -23 kJ/mol), primarily due to increased entropy after adsorption. Adsorption reached equilibrium within 7-9 h. Hence, PFAS will partition to the surface of secondary PET MPs within hours in fresh and saline waters. Natural organic matter decreased the capacity of secondary PET MPs for PFAS through electrosteric repulsion, while higher ionic strength favored PFAS adsorption by decreasing electrostatic repulsion. Increased pH increased electrostatic repulsion, which negated PFAS adsorption. The study provides fundamental information for developing models to predict interactions between secondary MPs and PFAS.

9.
Sci Total Environ ; 824: 153711, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35149076

RESUMO

Per- and polyfluoroalkyl substances (PFASs) used in aqueous film-forming foam (AFFF) comprise some perfluoroalkyl substances but a larger variety of polyfluoroalkyl substances. Despite their abundance in AFFF, information is lacking on the potential transformation of these polyfluoroalkyl substances. Due to the biological and chemical stability of the repeating perfluoroalkyl -(CF2)n- moiety common to all known AFFF-derived PFASs, it is not immediately evident whether the microbial biotransformation mechanisms observed for other organic contaminants also govern the microbial biotransformation of polyfluoroalkyl substances. Herein, we aim to: 1) review the literature on the aerobic or anaerobic microbial biotransformation of AFFF-derived polyfluoroalkyl substances in environmental media; 2) compile and summarize proposed microbial biotransformation pathways for major classes of polyfluoroalkyl substances; 3) identify the dominant biotransformation intermediates and terminal biotransformation products; and 4) discuss these findings in the context of environmental monitoring and source allocation. This analysis revealed that much more is currently known about aerobic microbial biotransformation of polyfluoroalkyl substances, as compared to anaerobic biotransformation. Further, there are some similarities in microbial biotransformations of fluorotelomer and electrochemical fluorination-derived polyfluoroalkyl substances, but differences may be largely due to head group composition. Dealkylation, oxidation, and hydrolytic reactions appear to be particularly important for microbial biotransformation of AFFF-derived polyfluoroalkyl substances, and these biotransformations may lead to formation of some semi-stable intermediates. Finally, this review discusses key knowledge gaps and opportunities for further research.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biotransformação , Monitoramento Ambiental , Fluorocarbonos/análise , Água/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Process Impacts ; 24(3): 439-446, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35113105

RESUMO

Aqueous film-forming foams (AFFFs) are important sources of per- and polyfluoroalkyl substances (PFASs) in soil, groundwater, and surface water. Soil microorganisms can convert polyfluorinated substances into persistent perfluoroalkyl acids, but the understanding of co-contaminant stimulation or inhibition of PFASs biotransformation is limited. In this study, we investigate how aerobic biotransformation of polyfluorinated substances was affected by common AFFF co-contaminants, such as gasoline aromatics: benzene, toluene, ethylbenzene, and o-xylene (BTEX). We performed aerobic microcosm studies by inoculating AFFF-impacted soil with medium containing 6:2 fluorotelomer thioether amido sulfonate (FtTAoS) and either diethyl glycol monobutyl ether (DGBE), a common AFFF ingredient, or BTEX compounds as the main carbon and energy source. BTEX-amended microcosms produced 4.3-5.3 fold more perfluoroalkyl carboxylates (PFCAs) than DGBE-amended ones, even though both organic carbon sources induced similar 6:2 FtTAoS biotransformation rates. In enrichments of AFFF-impacted solids selecting for BTEX biodegradation, we detected the presence of genes encoding toluene dioxygenase as well as larger abundances of transformation products from thioether oxidation that complement larger quantities of terminal transformation products. Our findings indicate that enrichment of BTEX-degrading microorganisms in the AFFF-impacted soil enhanced the conversion of 6:2 FtTAoS to PFCAs. These results provide insights into the high ratio of PFAAs to precursors at AFFF-impacted sites with history of BTEX bioremediation.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biodegradação Ambiental , Biotransformação , Ácidos Carboxílicos , Fluorocarbonos/análise , Sulfetos , Tensoativos , Poluentes Químicos da Água/análise
11.
Water Res ; 187: 116385, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949825

RESUMO

In this study, we report for the first time the effect of prescribed fires on the export of dissolved organic matter (DOM) and precursors of disinfectant by-products (DBPs) from periodically (every 2-3 years) and seasonally (i.e., dormant and growing) burned forest fuel materials (i.e., live vegetation, woody debris, and detritus [litter and duff]) and treatability of its rainwater leachate. Periodically applied (every 2-3 years for 40 years) prescribed fires decreased total fuel load (62±10%), primarily detrital mass (75±2%). However, functional groups (i.e., phenolic compounds, proteins, carbohydrates, aromatic [1-ring], polycyclic aromatic hydrocarbons [PAHs], and lipids) attached to DOM of ground solid materials did not change significantly. Outside rainwater leaching (from forest fuel materials) experiments showed that the leaching capacity of dissolved organic carbon (DOC) from burned litter samples decreased by 40±20% regardless of burning season when compared to unburned litter samples. The leaching of total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), ammonium (NH4+), and reactive phosphorus (PO43-) from burned materials decreased between 40 and 70% when compared to unburned materials. Also, DOM composition was affected by prescribed fire, which partially consumed humic-like substances based on fluorescence analyses. Thus, periodically applied prescribed fires also resulted in a reduction of trihalomethane (THM) (42±23%) and haloacetic acid (HAA) (42±20%) formation potentials (FPs), while DOC normalized reactivity of THM and HAA FPs did not change significantly. Additionally, the leaching of N-nitrosodimethylamine (NDMA) precursors, bromide ion (Br-), and selected elements (K, Ca, Mg, Mn, Fe, S, Na, B, and Al) were not significantly affected by prescribed fires. Finally, coagulant (i.e., alum and ferric) dose requirements and coagulation efficiencies were similar (i.e., removal of DOC, precursors of THMs and HAAs were 52-56%, 69-70%, 78-79%, respectively) in unburned and pre-burned leachate samples.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Nitrogênio/análise , Trialometanos/análise , Água , Poluentes Químicos da Água/análise
12.
Water Res ; 124: 630-653, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822343

RESUMO

While disinfection provides hygienically safe drinking water, the disinfectants react with inorganic or organic precursors, leading to the formation of harmful disinfection byproducts (DBPs). Biological filtration is a process in which an otherwise conventional granular filter is designed to remove not only fine particulates but also dissolved organic matters (e.g., DBP precursors) through microbially mediated degradation. Recently, applications of biofiltration in drinking water treatment have increased significantly. This review summarizes the effectiveness of biofiltration in removing DBPs and their precursors and identifies potential factors in biofilters that may control the removal or contribute to formation of DBP and their precursors during drinking water treatment. Biofiltration can remove a fraction of the precursors of halogenated DBPs (trihalomethanes, haloacetic acids, haloketones, haloaldehydes, haloacetonitriles, haloacetamides, and halonitromethanes), while also demonstrating capability in removing bromate and halogenated DBPs, except for trihalomethanes. However, the effectiveness of biofiltration mediated removal of nitrosamine and its precursors appears to be variable. An increase in nitrosamine precursors after biofiltration was ascribed to the biomass sloughing off from media or direct nitrosamine formation in the biofilter under certain denitrifying conditions. Operating parameters, such as pre-ozonation, media type, empty bed contact time, backwashing, temperature, and nutrient addition may be optimized to control the regulated DBPs in the biofilter effluent while minimizing the formation of unregulated emerging DBPs. While summarizing the state of knowledge of biofiltration mediated control of DBPs, this review also identifies several knowledge gaps to highlight future research topics of interest.


Assuntos
Desinfecção , Poluentes Químicos da Água , Reatores Biológicos , Filtração , Trialometanos , Purificação da Água
13.
Chemosphere ; 144: 1116-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26454121

RESUMO

N-methyl-p-nitroaniline (MNA) is an ingredient of insensitive munitions (IM) compounds that serves as a plasticizer and helps reduce unwanted detonations. As its use becomes widespread, MNA waste streams will be generated, necessitating viable treatment options. We studied MNA biodegradation and its inhibition potential to a representative anaerobic microbial population in wastewater treatment, methanogens. Anaerobic biodegradation and toxicity assays were performed and an up-flow anaerobic sludge blanket reactor (UASB) was operated to test continuous degradation of MNA. MNA was transformed almost stoichiometrically to N-methyl-p-phenylenediamine (MPD). MPD was not mineralized; however, it was readily autoxidized and polymerized extensively upon aeration at pH = 9. In the UASB reactor, MNA was fully degraded up to a loading rate of 297.5 µM MNA d(-1). Regarding toxicity, MNA was very inhibitory to acetoclastic methanogens (IC50 = 103 µM) whereas MPD was much less toxic, causing only 13.9% inhibition at the highest concentration tested (1025 µM). The results taken as a whole indicate that anaerobic sludge can transform MNA to MPD continuously, and that the transformation decreases the cytotoxicity of the parent pollutant. MPD can be removed through extensive polymerization. These insights could help define efficient treatment options for waste streams polluted with MNA.


Assuntos
Compostos de Anilina/análise , Reatores Biológicos/microbiologia , Esgotos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Esgotos/química , Esgotos/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia
14.
Chemosphere ; 148: 361-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26824274

RESUMO

Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 µM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 µM. The Ga(III)-citrate LOEL was 113 µM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 µM) or sodium citrate (213-3400 µM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 µM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 µM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology.


Assuntos
Arseniatos/toxicidade , Arsenitos/toxicidade , Comportamento Animal/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Gálio/toxicidade , Índio/toxicidade , Peixe-Zebra , Animais , Ecotoxicologia , Embrião não Mamífero/efeitos dos fármacos , Determinação de Ponto Final , Ensaios de Triagem em Larga Escala , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
15.
J Hazard Mater ; 304: 214-21, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26551225

RESUMO

Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations.


Assuntos
Anisóis/metabolismo , Substâncias Explosivas/metabolismo , Poluentes do Solo/metabolismo , Anaerobiose , Biotransformação , Carbono/metabolismo , Ferro/metabolismo , Oxirredução , Microbiologia do Solo
16.
Chemosphere ; 154: 499-506, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27085064

RESUMO

2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound. It undergoes rapid (bio)transformation in soils and anaerobic sludge. The primary transformation pathway catalyzed by a combination of biotic and abiotic factors is nitrogroup reduction followed by coupling of reactive intermediates to form azo-dimers. Additional pathways include N-acetylation and O-demethoxylation. Toxicity due to (bio)transformation products of DNAN has received little attention. In this study, the toxicity of DNAN (bio)transformation monomer products and azo-dimer and trimer surrogates to acetoclastic methanogens and the marine bioluminescent bacterium, Allivibrio fischeri, were evaluated. Methanogens were severely inhibited by 3-nitro-4-methoxyaniline (MENA), with a 50%-inhibiting concentration (IC50) of 25 µM, which is more toxic than DNAN with the same assay, but posed a lower toxicity to Allivibrio fischeri (IC50 = 219 µM). On the other hand, N-(5-amino-2-methoxyphenyl) acetamide (Ac-DAAN) was the least inhibitory test-compound for both microbial targets. Azo-dimer and trimer surrogates were very highly toxic to both microbial systems, with a toxicity similar or stronger than that of DNAN. A semi-quantitative LC-QTOF-MS method was employed to determine product mixture profiles at different stages of biotransformation, and compared with the microbial toxicity of the product-mixtures formed. Methanogenic toxicity increased due to putative reactive nitroso-intermediates as DNAN was reduced. However, the inhibition later attenuated as dimers became the predominant products in the mixtures. In contrast, A. fischeri tolerated the initial biotransformation products but were highly inhibited by the predominant azo-dimer products formed at longer incubation times, suggesting these ultimate products are more toxic than DNAN.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Anisóis/toxicidade , Biotransformação , Metano/metabolismo , Microbiologia do Solo , Aliivibrio fischeri/crescimento & desenvolvimento , Anisóis/química , Cromatografia Líquida , Espectrometria de Massas , Oxirredução , Esgotos/microbiologia
17.
Environ Toxicol Chem ; 35(11): 2774-2781, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27058972

RESUMO

2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound that readily undergoes anaerobic nitro-group reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by formation of unique azo dimers. Currently there is little knowledge on the ecotoxicity of DNAN (bio)transformation products. In the present study, mortality, development, and behavioral effects of DNAN (bio)transformation products were assessed using zebrafish (Danio rerio) embryos. The authors tested individual products, MENA and DAAN, as well as dimer and trimer surrogates. As pure compounds, 3-nitro-4-methoxyaniline and 2,2'-dimethoxy-4,4'-azodianiline caused statistically significant effects, with lowest-observable-adverse effect levels (LOAEL) at 6.4 µM on 1 or 2 developmental endpoints, respectively. The latter had 6 additional statistically significant developmental endpoints with LOAELs of 64 µM. Based on light-to-dark swimming behavioral tests, DAAN (640 µM) caused reduction in swimming, suggestive of neurotoxicity. No statistically significant mortality occurred (≤64 µM) for any of the individual compounds. However, metabolite mixtures formed during different stages of MENA (bio)transformation in soil were characterized using high-resolution mass spectrometry in parallel with zebrafish embryo toxicity assays, which demonstrated statistically significant mortality during the onset of azo-dimer formation. Overall the results indicate that several DNAN (bio)transformation products cause different types of toxicity to zebrafish embryos. Environ Toxicol Chem 2016;35:2774-2781. © 2016 SETAC.


Assuntos
Compostos de Anilina/toxicidade , Anisóis/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Substâncias Explosivas/toxicidade , Fenilenodiaminas/toxicidade , Peixe-Zebra/embriologia , Anaerobiose , Compostos de Anilina/metabolismo , Animais , Anisóis/metabolismo , Comportamento Animal/efeitos dos fármacos , Biotransformação , Embrião não Mamífero/metabolismo , Substâncias Explosivas/metabolismo , Espectrometria de Massas , Fenilenodiaminas/metabolismo , Solo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA