RESUMO
Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.
Assuntos
Clostridioides difficile , Clostridioides , Animais , Camundongos , Clostridioides/metabolismo , Clostridioides difficile/metabolismo , Peptidoglicano/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
Herein, we report the synthesis of extended sulfo-pillar[6]arenes (sP6), a new host class with a pedigree in salt tolerance and ultrahigh binding affinity toward multiple drug classes. The parent sulfo-pillar[6]arene is a high-affinity host with the potential to act as a supramolecular reversal agent. However, it lacks synthetic diversification of the core scaffold. The new extended sulfo-pillar[6]arenes have either a monodirectional (A1sP6) or bidirectional (A1A2sP6) extension of the hydrophobic cavity. This new functionality enables more noncovalent interactions and strong affinity toward guests, which we demonstrate using the direct oral anticoagulants (DOACs) dabigatran, betrixaban, and edoxaban. DOACs are highly prescribed therapeutics that are underexplored in host-guest chemistry. These agents prevent the formation of blood clots and are prime targets for supramolecular sequestration. This functionalization also introduces new fluorescent properties to the sulfo-pillar[6]arene family via an incorporated p-terphenyl (A1A2sP6). We show that these new hosts have ultrahigh affinity toward dabigatran (Kd = 27 nM, A1A2sP6) in salty solutions and that the A1A2sP6 analogue can bind betrixaban in bovine plasma with a physiologically relevant Kd (7 µM).
RESUMO
A new type of diborate clathrochelate (cage) ligand featuring nine inwardly pointing nitrogen donors that form a large, rigid cavity, termed a mausolate, is presented. The cavity size and high denticity make this an attractive delivery vehicle for large radionuclides in nuclear medicine. Metal mausolate complexes are stable to air and water (neutral pH) and display extremely high thermal stability (>400 °C). Lanthanide uptake by the mausolate ligand occurs rapidly in solution at room temperature and once complexed, the lanthanide ions are not displaced by a 250-fold excess of a competitive lanthanide salt over more than one week.
RESUMO
Four uranyl peroxide compounds with novel structures were formed following the dissolution of studtite, [(UO2)(O2)(H2O)2](H2O)2, in imidazolium-based ionic liquids. The compounds were characterized using single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Raman and infrared (IR) spectroscopy, and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The ionic liquids used in the experiments were 1-ethyl-3-methylimidazolium (EMIm) diethyl phosphate, EMIm ethyl sulfate, and EMIm acetate. Each of the four uranyl peroxide compounds contain components from the ionic liquids as terminal ligands on uranyl peroxide molecular units, bridging ligands in uranyl peroxide sheet structures, or charge balancing cations located in the interstitial space. The studtite dissolved in and reacted with the ionic liquids, producing unique crystal structures depending on the anionic component of the ionic liquid, the temperature at which the synthesis was performed, and the introduction of additional ionic species into the solution. This is the first report of studtite dissolving in and reacting with ionic liquids to form uranyl peroxide compounds, which has the potential to vastly increase the number of synthetic routes for the formation of uranyl peroxide clusters and uranyl peroxide cage clusters.
RESUMO
Progress toward the closure of the nuclear fuel cycle can be achieved if satisfactory separation strategies for the chemoselective speciation of the trivalent actinides from the lanthanides are realized in a nonproliferative manner. Since Kolarik's initial report on the utility of bis-1,2,4-triazinyl-2,6-pyridines (BTPs) in 1999, a perfect complexant-based, liquid-liquid separation system has yet to be realized. In this report, a comprehensive performance assessment for the separation of 241Am3+ from 154Eu3+ as a model system for spent nuclear fuel using hydrocarbon-actuated alkoxy-BTP complexants is described. These newly discovered complexants realize gains that contemporary aryl-substituted BTPs have yet to achieve, specifically: long-term stability in highly concentrated nitric acid solutions relevant to the low pH of unprocessed spent nuclear fuel, high DAm over DEu in the economical, nonpolar diluent Exxal-8, and the demonstrated capacity to complete the separation cycle with high efficiency by depositing the chelated An3+ to the aqueous layer via decomplexation of the metal-ligand complex. These soft-N-donor BTPs are hypothesized to function as bipolar complexants, effectively traversing the organic/aqueous interface for effective chelation and bound metal/ligand complex solubility. Complexant design, separation assays, spectroscopic analysis, single-crystal X-ray crystallographic data, and DFT calculations are reported.
RESUMO
Cobaltcarbonyl-tert-butylacetylene (CCTBA) is a conventional precursor for the selective atomic layer deposition of Co onto silicon surfaces. However, a limited understanding of the deposition mechanism of such cobalt precursors curbs rational improvements on their design for increased efficiency and tuneable selectivity. The impact of using a less reactive internal alkyne instead of a terminal alkyne was investigated using experimental and computational methods. Using electrospray-ionization mass spectrometry, the formation of CCTBA analogs and their gas phase decomposition pathways were studied. Decomposition experiments show very similar decomposition pathways between the two complexes. The internal alkyne dissociates from the Co complex at slightly lower energies than the terminal alkyne, suggesting that an internal alkynyl ligand may be more suited to low temperature ALD. In addition, transition state calculations using the nudged elastic band method confirm an increased reaction barrier between the internal alkyne and the Si-H surface bonds on Si(111). These results suggests that using a less reactive internal alkyne will result in fewer embedded carbon impurities during deposition onto Si wafers. DFT calculations using the PBE functional and periodic boundary conditions also predict increased surface binding with the metal centers of the internal alkynyl complex.
RESUMO
Ultra-high vacuum scanning tunneling microscopy (UHV-STM) was used to investigate two related molecules pulse-deposited onto Au(111) surfaces: indoline-2-carboxylic acid and proline (pyrrolidine-2-carboxylic acid). Indoline-2-carboxylic acid and proline form both dimers and C5-symmetric "pinwheel" pentamers. Enantiomerically pure S-(-)-indoline-2-carboxylic acid and S-proline were used, and the pentamer structures observed for both were chiral. However, the presence of apparently equal numbers of 'right-' and 'left-handed' pinwheels is contrary to the general understanding that the chirality of the molecule dictates supramolecular chirality. A variety of computational methods were used to elucidate pentamer geometry for S-proline. Straightforward geometry optimization proved difficult, as the size of the cluster and the number of possible intermolecular interactions produced an interaction potential with multiple local minima. Instead, the Amber force field was used to exhaustively search all of phase space for chemically reasonable pentamer structures, producing a limited number of candidate structures that were then optimized as gas-phase clusters using density functional theory (DFT). The binding energies of the two lowest-energy pentamers on the Au(111) surface were then calculated by plane-wave DFT using the VASP software, and STM images predicted. These calculations indicate that the right- and left-handed pentamers are instead two different polymorphs.
RESUMO
Cyclobutadiene is a highly reactive antiaromatic hydrocarbon that has fascinated chemists for over 60 years. However, its preparation and uses in chemical synthesis are sparing, in part due to its lengthy synthesis that generates hazardous byproducts including excess heavy metals. Herein, we report a scalable, metal-free cyclobutadiene reagent, diethyldiazabicyclohexene dicarboxylate, and explore its intermolecular [4 + 2] cycloaddition with various electron-deficient alkenes. We also demonstrate its utility in a three-step synthesis of dipiperamide G and a diverse array of product derivatizations including bromocyclobutadiene.
RESUMO
Invited for the cover of this issue is the group of Amy Hixon at the University of Notre Dame. The image depicts the newly identified structure of a PuIV oxalate sheet compared to the historically assumed structure. Read the full text of the article at 10.1002/chem.202301164.
RESUMO
Plutonium(IV) oxalate hexahydrate (Pu(C2 O4 )2 â 6 H2 O; PuOx) is an important intermediate in the recovery of plutonium from used nuclear fuel. Its formation by precipitation is well studied, yet its crystal structure remains unknown. Instead, the crystal structure of PuOx is assumed to be isostructural with neptunium(IV) oxalate hexahydrate (Np(C2 O4 )2 â 6 H2 O; NpOx) and uranium(IV) oxalate hexahydrate (U(C2 O4 )2 â 6 H2 O; UOx) despite the high degree of unresolved disorder that exists when determining water positions in the crystal structures of the latter two compounds. Such assumptions regarding the isostructural behavior of the actinide elements have been used to predict the structure of PuOx for use in a wide range of studies. Herein, we report the first crystal structures for PuOx and Th(C2 O4 )2 â 6 H2 O (ThOx). These data, along with new characterization of UOx and NpOx, have resulted in the full determination of the structures and resolution of the disorder around the water molecules. Specifically, we have identified the coordination of two water molecules with each metal center, which necessitates a change in oxalate coordination mode from axial to equatorial that has not been reported in the literature. The results of this work exemplify the need to revisit previous assumptions regarding fundamental actinide chemistry, which are heavily relied upon within the current nuclear field.
RESUMO
Previously reported carbazole-bis(tetrazole) (CzTR) ligands (where R = iPr and CH2-2,4,6-C6H2Me3) were used to synthesize air-stable, six-coordinate, octahedral bis-ligand Fe(II) complexes (CzTR)2Fe. The synthesis and characterization of these complexes using 1H nuclear magnetic resonance (NMR), X-ray crystallography, Mössbauer spectroscopy, and density functional theory (DFT) calculations are reported. Analysis of the magnetic properties revealed that the isopropyl derivative displays thermally induced spin crossover (SCO) over a temperature range of 150-350 K. This transition appears as an abrupt two-step transition in the solid state but simplifies to a smooth one-step transition in solution. The two-step transition in the solid state has been postulated to be due to lattice and solvation effects. In contrast, the slightly bulkier substituted CH2-2,4,6-C6H2Me3 (CH2Mes) Fe complex displays dramatically different magnetic behavior with no SCO and magnetic data suggesting low-spin Fe(II) with a possible TIP contribution. DFT calculations support the postulate that the change in magnetic behavior is primarily due to the nature of the ligand substituents.
RESUMO
Incorporation of secondary metal ions into heterobimetallic complexes has emerged as an attractive strategy for rational tuning of compounds' properties and reactivity, but direct solution-phase spectroscopic interrogation of tuning effects has received less attention than it deserves. Here, we report the assembly and study of a series of heterobimetallic complexes containing the vanadyl ion, [VO]2+, paired with monovalent cations (Cs+, Rb+, K+, Na+, and Li+) and a divalent cation (Ca2+). These complexes, which can be isolated in pure form or generated in situ from a common monometallic vanadyl-containing precursor, enable experimental spectroscopic and electrochemical quantification of the influence of the incorporated cations on the properties of the vanadyl moiety. The data reveal systematic shifts in the V-O stretching frequency, isotropic hyperfine coupling constant for the vanadium center, and V(V)/V(IV) reduction potential in the complexes. These shifts can be interpreted as charge density effects parametrized through the Lewis acidities of the cations, suggesting broad potential for the vanadyl ion to serve as a spectroscopic probe in multimetallic species.
RESUMO
The 2,2'-bipyridyl-6,6'-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO22+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO22+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e- reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species.
RESUMO
Methyl aldohexopyranosides were 13C-labeled at contiguous carbons, crystallized, and studied by single-crystal X-ray crystallography and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to examine the degree to which density functional theory (DFT) can calculate one-bond 13C-13C spin-coupling constants (1JCC) in saccharides with sufficient accuracy to permit their use in MA'AT analysis, a newly-reported hybrid DFT/NMR method that provides probability distributions of molecular torsion angles in solution (Zhang et al., J. Phys. Chem. B, 2017, 121, 3042-3058; Meredith et al., J. Chem. Inf. Model., 2022, 62, 3135-3141). Experimental 1JCC values in crystalline samples of the doubly 13C-labeled compounds were measured by solid-state 13C NMR and compared to those calculated from five different DFT models: (1) 1JCC values calculated from single structures identical to those observed in crystalline samples by X-ray crystallography (all atom refinement); (2) 1JCC values calculated from the single structures in (1) but after Hirshfeld atom refinement (HAR); (3) 1JCC values calculated from the single structures in (1) after DFT-optimization of hydrogen atoms only; and (4 and 5) 1JCC values calculated in rotamers of torsion angle θ2 (C1-C2-O2-O2H) or ω (C4-C5-C6-O6) from which either specific or generalized parameterized equations were obtained and used to calculate 1JCC values in the specific θ2 or ω rotamers observed in crystalline samples. Good qualitative agreement was observed between calculated 1JCC values and those measured by solid-state 13C NMR regardless of the DFT model, but in no cases were calculated 1JCC values quantitative, differing (over-estimated) on average by 4-5% from experimental values. These findings, and those reported recently from solution NMR studies (Tetrault et al., J. Phys. Chem. B 2022, 126, 9506-9515), indicate that improvements in DFT calculations are needed before calculated 1JCC values can be used directly as reliable constraints in MA'AT analyses of saccharides in solution.
RESUMO
Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules that are identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the new transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy, while cyclic voltammetry showed more marked differences in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds' kinetic stabilities, as demonstrated by decomposition using high acid concentration and elevated temperature, showed that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude that ligand-metal complementarity must be maintained in order for the topological and rigidity constraints imparted by the cross-bridge to contribute significantly to complex robustness.
Assuntos
Complexos de Coordenação , Ciclamos , Elementos de Transição , Humanos , Complexos de Coordenação/química , Estrutura Molecular , Raios X , Elementos de Transição/química , Etilenos/química , Cristalografia por Raios XRESUMO
Twenty novel Mn, Fe, and Cu complexes of ethylene cross-bridged tetraazamacrocycles with potentially copolymerizable allyl and benzyl pendant arms were synthesized and characterized. Multiple X-ray crystal structures demonstrate the cis-folded pseudo-octahedral geometry forced by the rigidifying ethylene cross-bridge and show that two cis coordination cites are available for interaction with substrate and oxidant. The Cu complexes were used to determine kinetic stability under harsh acidic and high-temperature conditions, which revealed that the cyclam-based ligands provide superior stabilization with half-lives of many minutes or even hours in 5 M HCl at 50-90 °C. Cyclic voltammetry studies of the Fe and Mn complexes reveal reversible redox processes indicating stabilization of Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ oxidation states, indicating the likelihood of catalytic oxidation for these complexes. Finally, dye-bleaching experiments with methylene blue, methyl orange, and rhodamine B demonstrate efficient catalytic decolorization and allow selection of the most successful monomeric catalysts for copolymerization to produce future heterogeneous water purification materials.
RESUMO
We show that the conductivity of hybrid vanadium bronzes-mixed-valence organic-inorganic vanadium oxides-can be tuned over six orders of magnitude through judicious choice of molecular component. By systematically varying the steric profile, charge density, and propensity to hydrogen bond across a series of eight diammonium-based molecules, we engender multiple distinct motifs of V-O connectivity within the two-dimensional vanadium oxide layers of a family of bulk crystalline hybrid materials. A combination of single-crystal and powder X-ray diffraction analysis, variable-temperature electrical transport measurements, and a range of spectroscopic methods, including UV/Visible diffuse reflectance, X-ray photoelectron, and electron paramagnetic resonance are employed to probe how vanadium oxide layer topology correlates with electron localization. Specifically, alkylammonium molecules yield hybrids featuring more corrugated layers that contain V-O tetrahedra as well as a higher ratio of corner-sharing to edge-sharing polyhedra and that exhibit highly localized electronic behavior, while alkyl bipyridinium molecules yield more regular layers with polyhedral edge-sharing that show substantially delocalized electronic behavior. This work allows for the development of design principles based on structure-property relationships and brings the charge transport capabilities of hybrid vanadium bronzes to more technologically relevant levels.
RESUMO
Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4'-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1, with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.
Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Camundongos , Anticorpos Monoclonais/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodosRESUMO
Due to the lack of new antimicrobial drug discovery in recent years and an ever-growing prevalence of multidrug-resistant "superbugs", there is a pressing need to explore alternative ways to combat pathogenic bacterial and fungal infections. Building upon our previous work in the field of medicinal phytochemistry, the present study is focused on designing, synthesizing, and testing the altered bioactivity of new variants of two original bioactive molecules found in the Argemone mexicana plant. Herein, we report upon 14 variants of berberine and four variants of chelerythrine that have been screened against a pool of 12 microorganisms (five Gram-positive and four Gram-negative bacteria, and three fungi). Additionally, the crystal structures of two berberine variants are described. Several berberine variants show enhanced antibacterial activity compared to the unaltered plant-derived molecule. We also report promising preliminary tumor cytotoxicity effects for a number of the berberine derivatives.
RESUMO
In efforts to study the periodic chemical properties of the rare earth elements and their structural chemistry, a hybrid double perovskite phase A2B'BX6 with the formula ((CH3)4N)2KLn(NO3)6 (Ln = La-Lu, Y ex. Pm) was synthesized that crystallizes in the cubic space group, Fm3Ì m. This series was obtained via evaporative crystallization from a mixture of Ln(NO3)3, KNO3, and (CH3)4N·NO3 in a 1:1:2 ratio from either H2O or 4.0 M HNO3. In this double perovskite structure, the B site containing the lanthanide ion is coordinated by six bidentate nitrate ligands, with the distal NâO oxygen atoms coordinating the potassium on the B' site in an octahedral six-coordinate environment. The two remaining charge-compensating (CH3)4N+ cations occupy the interstitial voids in the lattice on the A site. This periodic series was characterized via single-crystal X-ray diffraction, powder X-ray diffraction, IR, and Raman spectroscopy. Emission spectra of the Eu complex indicate a phase transition to trigonal symmetry upon cooling. This series is unique as it represents a rare isostructural series spanning the entirety of the rare earth elements excluding promethium with homoleptic 12-coordinate rare earth metal ions.