Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biophys J ; 121(1): 68-78, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34902330

RESUMO

Cells use homeostatic mechanisms to ensure an optimal composition of distinct types of lipids in cellular membranes. The hydrophilic region of biological lipid membranes is mainly composed of several types of phospholipid headgroups that interact with incoming molecules, nanoparticles, and viruses, whereas the hydrophobic region consists of a distribution of acyl chains and sterols affecting membrane fluidity/rigidity related properties and forming an environment for membrane-bound molecules such as transmembrane proteins. A fundamental open question is to what extent the motions of these regions are coupled and, consequently, how strongly the interactions of phospholipid headgroups with other molecules depend on the properties and composition of the membrane hydrophobic core. We combine advanced solid-state nuclear magnetic resonance spectroscopy with high-fidelity molecular dynamics simulations to demonstrate how the rotational dynamics of choline headgroups remain nearly unchanged (slightly faster) with incorporation of cholesterol into a phospholipid membrane, contrasting the well-known extreme slowdown of the other phospholipid segments. Notably, our results suggest a new paradigm in which phospholipid dipole headgroups interact as quasi-freely rotating flexible dipoles at the interface, independent of the properties in the hydrophobic region.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Membrana Celular/química , Colesterol/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química
2.
J Am Chem Soc ; 143(34): 13701-13709, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465095

RESUMO

Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions. We find that lipid headgroups sample a wide range of overlapping conformations in both neutral and charged cellular membranes, and that differences in the headgroup chemistry manifest only in probability distributions of conformations. Furthermore, the analysis of 894 protein-bound lipid structures from the Protein Data Bank suggests that lipids can bind to proteins in a wide range of conformations, which are not limited by the headgroup chemistry. We propose that lipids can select a suitable headgroup conformation from the wide range available to them to fit the various binding sites in proteins. The proposed inverse conformational selection model will extend also to lipid binding to targets other than proteins, such as drugs, RNA, and viruses.


Assuntos
Lipídeos/química , Proteínas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Ligação Proteica , Proteínas/metabolismo
3.
J Chem Inf Model ; 61(2): 938-949, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33496579

RESUMO

Molecular dynamics (MD) simulations are widely used to monitor time-resolved motions of biomacromolecules, although it often remains unknown how closely the conformational dynamics correspond to those occurring in real life. Here, we used a large set of open-access MD trajectories of phosphatidylcholine (PC) lipid bilayers to benchmark the conformational dynamics in several contemporary MD models (force fields) against nuclear magnetic resonance (NMR) data available in the literature: effective correlation times and spin-lattice relaxation rates. We found none of the tested MD models to fully reproduce the conformational dynamics. That said, the dynamics in CHARMM36 and Slipids are more realistic than in the Amber Lipid14, OPLS-based MacRog, and GROMOS-based Berger force fields, whose sampling of the glycerol backbone conformations is too slow. The performance of CHARMM36 persists when cholesterol is added to the bilayer, and when the hydration level is reduced. However, for conformational dynamics of the PC headgroup, both with and without cholesterol, Slipids provides the most realistic description because CHARMM36 overestimates the relative weight of ∼1 ns processes in the headgroup dynamics. We stress that not a single new simulation was run for the present work. This demonstrates the worth of open-access MD trajectory databanks for the indispensable step of any serious MD study: benchmarking the available force fields. We believe this proof of principle will inspire other novel applications of MD trajectory databanks and thus aid in developing biomolecular MD simulations into a true computational microscope-not only for lipid membranes but for all biomacromolecular systems.


Assuntos
Benchmarking , Fosfolipídeos , Bicamadas Lipídicas , Conformação Molecular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular
4.
Phys Chem Chem Phys ; 22(37): 21185-21196, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32929427

RESUMO

Importance of disordered protein regions is increasingly recognized in biology, but their characterization remains challenging due to the lack of suitable experimental and theoretical methods. NMR experiments can detect multiple timescale dynamics and structural details of disordered protein regions, but their detailed interpretation is often difficult. Here we combine protein backbone 15N spin relaxation data with molecular dynamics (MD) simulations to detect not only heterogeneous dynamics of large partially disordered proteins but also their conformational ensembles. We observed that the rotational dynamics of folded regions in partially disordered proteins is dominated by similar rigid body rotation as in globular proteins, thereby being largely independent of flexible disordered linkers. Disordered regions, on the other hand, exhibit complex rotational motions with multiple timescales below ∼30 ns which are difficult to detect from experimental data alone, but can be captured by MD simulations. Combining MD simulations and backbone 15N spin relaxation data, measured applying segmental isotopic labeling with salt-inducible split intein, we resolved the conformational ensemble and dynamics of partially disordered periplasmic domain of TonB protein from Helicobacter pylori containing 250 residues. To demonstrate the universality of our approach, it was applied also to the partially disordered region of chicken Engrailed 2. Our results pave the way in understanding how TonB transfers energy from inner membrane to the outer membrane receptors in Gram-negative bacteria, as well as the function of other proteins with disordered domains.


Assuntos
Proteínas de Bactérias/química , Proteínas de Homeodomínio/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Sequência de Aminoácidos , Animais , Membrana Celular/química , Galinhas , Helicobacter pylori/química , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos
5.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171880

RESUMO

Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from Mycobacterium chimaera and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins. The class 3 intein uses a bond cleavage strategy reminiscent of proteases but share the same Hedgehog/INTein (HINT) fold of other intein classes. Engineering of class 3 inteins from a class 1 intein indicated that a class 3 intein would unlikely evolve directly from a class 1 or 2 intein. The HINT fold appears as structural and functional solution for trans-peptidyl and trans-esterification reactions commonly exploited by diverse mechanisms using different combinations of amino-acid types for the active-site residues.


Assuntos
Proteínas Hedgehog/fisiologia , Inteínas/fisiologia , Processamento de Proteína/fisiologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Proteínas Hedgehog/genética , Inteínas/genética , Simulação de Dinâmica Molecular , Mycobacterium/genética , Mycobacterium/metabolismo , Processamento de Proteína/genética , Splicing de RNA/fisiologia
6.
J Chem Inf Model ; 59(10): 4093-4099, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31525920

RESUMO

Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 ( https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/ ). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations.


Assuntos
Disseminação de Informação , Modelos Químicos , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
7.
Langmuir ; 34(7): 2565-2572, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28945973

RESUMO

Lung surfactant and a tear film lipid layer are examples of biologically relevant macromolecular structures found at the air-water interface. Because of their complexity, they are often studied in terms of simplified lipid layers, the simplest example being a Langmuir monolayer. Given the profound biological significance of these lipid assemblies, there is a need to understand their structure and dynamics on the nanoscale, yet there are not many techniques able to provide this information. Atomistic molecular dynamics simulations would be a tool fit for this purpose; however, the simulation models suggested until now have been qualitative instead of quantitative. This limitation has mainly stemmed from the challenge to correctly describe the surface tension of water with simulation parameters compatible with other biomolecules. In this work, we show that this limitation can be overcome by using the recently introduced four-point OPC water model, whose surface tension for water is demonstrated to be quantitatively consistent with experimental data and which is also shown to be compatible with the commonly employed lipid models. We further establish that the approach of combining the OPC four-point water model with the CHARMM36 lipid force field provides nearly quantitative agreement with experiments for the surface pressure-area isotherm for POPC and DPPC monolayers, also including the experimentally observed phase coexistence in a DPPC monolayer. The simulation models reported in this work pave the way for nearly quantitative atomistic studies of lipid-rich biological structures at air-water interfaces.

8.
Biochim Biophys Acta ; 1858(10): 2512-2528, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26809025

RESUMO

Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Colesterol/química , Imageamento por Ressonância Magnética , Fosfatidilcolinas/química
9.
Langmuir ; 32(25): 6524-33, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27260273

RESUMO

Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Fosforilcolina/química
10.
Phys Chem Chem Phys ; 18(47): 32560-32569, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27874109

RESUMO

Despite the vast amount of experimental and theoretical studies on the binding affinity of cations - especially the biologically relevant Na+ and Ca2+ - for phospholipid bilayers, there is no consensus in the literature. Here we show that by interpreting changes in the choline headgroup order parameters according to the 'molecular electrometer' concept [Seelig et al., Biochemistry, 1987, 26, 7535], one can directly compare the ion binding affinities between simulations and experiments. Our findings strongly support the view that in contrast to Ca2+ and other multivalent ions, Na+ and other monovalent ions (except Li+) do not specifically bind to phosphatidylcholine lipid bilayers at sub-molar concentrations. However, the Na+ binding affinity was overestimated by several molecular dynamics simulation models, resulting in artificially positively charged bilayers and exaggerated structural effects in the lipid headgroups. While qualitatively correct headgroup order parameter response was observed with Ca2+ binding in all the tested models, no model had sufficient quantitative accuracy to interpret the Ca2+:lipid stoichiometry or the induced atomistic resolution structural changes. All scientific contributions to this open collaboration work were made publicly, using nmrlipids.blogspot.fi as the main communication platform.


Assuntos
Cátions/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Cálcio/química , Modelos Químicos , Simulação de Dinâmica Molecular , Sódio/química
11.
J Chem Phys ; 142(4): 044905, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25638007

RESUMO

Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 µs. The reorientational dynamics of the C-H bonds is conventionally verified by measurements of (13)C or (2)H nuclear magnetic resonance (NMR) longitudinal relaxation rates R1, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomically resolved model-free estimation of the C-H bond effective reorientational correlation time τe, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of (13)C R1 and R1ρ relaxation rates, as well as (1)H-(13)C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of τe from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g1 methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the τe-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental τe-profiles can be used to study subtle effects on C-H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C-H bond reorientation dynamics predicted in MD simulations of amphiphilic bilayers such as lipid membranes.

12.
Langmuir ; 30(2): 461-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24372090

RESUMO

The structure of the lamellar phase of aqueous pentaethylene glycol mono-n-dodecyl ether (C12E5) surfactant at various temperatures and molar fractions is studied by using united atom molecular dynamics simulations and nuclear magnetic resonance measurements. Namely, the simulation model is used to interpret the magnitude and temperature dependence of experimental C-H order parameter profiles in terms of the molecular conformation and orientation. Our simulations suggest that the low order parameters that are generally measured in poly(ethylene oxide) surfactant bilayers are due to the presence of bilayer pores throughout the entire lamellar phase region.


Assuntos
Éteres/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Tensoativos/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Conformação Molecular , Prótons
13.
J Chem Theory Comput ; 20(10): 4325-4337, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38718349

RESUMO

Owing to the increase of available computational capabilities and the potential for providing a more accurate description, polarizable molecular dynamics force fields are gaining popularity in modeling biomolecular systems. It is, however, crucial to evaluate how much precision is truly gained with increasing cost and complexity of the simulation. Here, we leverage the NMRlipids open collaboration and Databank to assess the performance of available polarizable lipid models─the CHARMM-Drude and the AMOEBA-based parameters─against high-fidelity experimental data and compare them to the top-performing nonpolarizable models. While some improvement in the description of ion binding to membranes is observed in the most recent CHARMM-Drude parameters, and the conformational dynamics of AMOEBA-based parameters are excellent, the best nonpolarizable models tend to outperform their polarizable counterparts for each property we explored. The identified shortcomings range from inaccuracies in describing the conformational space of lipids to excessively slow conformational dynamics. Our results provide valuable insights for the further refinement of polarizable lipid force fields and for selecting the best simulation parameters for specific applications.


Assuntos
Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química
14.
Commun Chem ; 7(1): 28, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351219

RESUMO

Peptides or proteins containing small biomolecular aggregates, such as micelles, bicelles, droplets and nanodiscs, are pivotal in many fields ranging from structural biology to pharmaceutics. Monitoring dynamics of such systems has been limited by the lack of experimental methods that could directly detect their fast (picosecond to nanosecond) timescale dynamics. Spin relaxation times from NMR experiments are sensitive to such motions, but their interpretation for biomolecular aggregates is not straightforward. Here we show that the dynamic landscape of peptide-containing molecular assemblies can be determined by a synergistic combination of solution state NMR experiments and molecular dynamics (MD) simulations. Solution state NMR experiments are straightforward to implement without an excessive amount of sample, while direct combination of spin relaxation data to MD simulations enables interpretation of dynamic landscapes of peptides and other aggregated molecules. To demonstrate this, we interpret NMR data from transmembrane, peripheral, and tail anchored peptides embedded in micelles. Our results indicate that peptides and detergent molecules do not rotate together as a rigid body, but peptides rotate in a viscous medium composed of detergent micelle. Spin relaxation times also provide indirect information on peptide conformational ensembles. This work gives new perspectives on peptide dynamics in complex biomolecular assemblies.

15.
Nat Commun ; 15(1): 1136, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326316

RESUMO

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.


Assuntos
Inteligência Artificial , Lipídeos de Membrana , Membrana Celular , Simulação de Dinâmica Molecular , Aprendizado de Máquina
16.
Phys Chem Chem Phys ; 15(6): 1976-89, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23258433

RESUMO

The concentration of cholesterol in cell membranes affects membrane fluidity and thickness, and might regulate different processes such as the formation of lipid rafts. Since interpreting experimental data from biological membranes is rather intricate, investigations on simple models with biological relevance are necessary to understand the natural systems. We study the effect of cholesterol on the molecular structure of multi-lamellar vesicles (MLVs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a phospholipid ubiquitous in cell membranes, with compositions in the range 0-60 mol% cholesterol. Order parameters, |S(CH)|, are experimentally determined by using (1)H-(13)C solid-state nuclear magnetic resonance (NMR) spectroscopy with segmental detail for all parts of both the cholesterol and POPC molecules, namely the ring system and alkyl chain of the sterol, as well as the glycerol backbone, choline headgroup and the sn-1 and sn-2 acyl chains of POPC. With increasing cholesterol concentration the acyl chains gradually adopt a more extended conformation while the orientation and dynamics of the polar groups are rather unaffected. Additionally, we perform classical molecular dynamics simulations on virtual bilayers mimicking the POPC-cholesterol MLVs investigated by NMR. Good agreement between experiments and simulations is found for the cholesterol alignment in the bilayer and for the |S(CH)| profiles of acyl chains below 15 mol% cholesterol. Deviations occur for the choline headgroup and glycerol backbone parts of POPC, as well as for the phospholipid and cholesterol alkyl chains at higher cholesterol concentrations. The unprecedented detail of the NMR data enables a more complete comparison between simulations and experiments on POPC-cholesterol bilayers and may aid in developing more realistic model descriptions of biological membranes.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Isótopos de Carbono/química , Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas
17.
J Chem Theory Comput ; 19(18): 6342-6352, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37616238

RESUMO

Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Simulação de Dinâmica Molecular , Colesterol/química
18.
Biophys J ; 103(6): 1236-44, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995496

RESUMO

Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is <1.4 nm(2). Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state.


Assuntos
Lipoproteínas HDL/química , Lipoproteínas LDL/química , Simulação de Dinâmica Molecular , Pressão , Cinética , Conformação Proteica , Propriedades de Superfície
19.
J Chem Theory Comput ; 18(3): 1862-1869, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133839

RESUMO

Lipid monolayers provide our lungs and eyes their functionality and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively including using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air-water interface. Particularly, the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here, we combine the recent C36/LJ-PME lipid force field that includes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure-area isotherms and monolayer phase behavior. The latter includes the liquid expanded and liquid condensed phases, their coexistence, and the opening of pores at the correct area per lipid upon expansion. Despite these improvements of the C36/LJ-PME with certain water models, the standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high-quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.


Assuntos
Simulação de Dinâmica Molecular , Água , Lipídeos , Tensão Superficial , Água/química
20.
J Phys Chem B ; 126(36): 6955-6963, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063117

RESUMO

Interactions of charged molecules with biomembranes regulate many of their biological activities, but their binding affinities to lipid bilayers are difficult to measure experimentally and model theoretically. Classical molecular dynamics (MD) simulations have the potential to capture the complex interactions determining how charged biomolecules interact with membranes, but systematic overbinding of sodium and calcium cations in standard MD simulations raises the question of how accurately force fields capture the interactions between lipid membranes and charged biomolecules. Here, we evaluate the binding of positively charged small molecules, etidocaine, and tetraphenylphosphonium to a phosphatidylcholine (POPC) lipid bilayer using the changes in lipid head-group order parameters. We observed that these molecules behave oppositely to calcium and sodium ions when binding to membranes: (i) their binding affinities are not overestimated by standard force field parameters, (ii) implicit inclusion of electronic polarizability increases their binding affinity, and (iii) they penetrate into the hydrophobic membrane core. Our results can be explained by distinct binding mechanisms of charged small molecules with hydrophobic moieties and monoatomic ions. The binding of the former is driven by hydrophobic effects, while the latter has direct electrostatic interactions with lipids. In addition to elucidating how different kinds of charged biomolecules bind to membranes, we deliver tools for further development of MD simulation parameters and methodology.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Cálcio/metabolismo , Íons/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA