Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 36(10): 2926-44, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961948

RESUMO

Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.


Assuntos
Encéfalo/anormalidades , Encéfalo/patologia , Anormalidades Craniofaciais/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/genética , Trissomia/fisiopatologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Cromossomos Humanos Par 16/genética , Deficiências do Desenvolvimento/etiologia , Embrião de Mamíferos , Comportamento Exploratório/fisiologia , Feminino , Genótipo , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Força Muscular/genética , Nestina/genética , Nestina/metabolismo , Neurogênese/genética , Memória Espacial/fisiologia , Trissomia/genética
2.
J Neurosci ; 33(17): 7548-58, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616559

RESUMO

Fragile X syndrome (FXS) is a debilitating neurodevelopmental disorder thought to arise from disrupted synaptic communication in several key brain regions, including the amygdala, a central processing center for information with emotional and social relevance. Recent studies reveal defects in both excitatory and inhibitory neurotransmission in mature amygdala circuits in Fmr1(-/y) mutants, the animal model of FXS. However, whether these defects are the result of altered synaptic development or simply faulty mature circuits remains unknown. Using a combination of electrophysiological and genetic approaches, we show the development of both presynaptic and postsynaptic components of inhibitory neurotransmission in the FXS amygdala is dynamically altered during critical stages of neural circuit formation. Surprisingly, we observe that there is a homeostatic correction of defective inhibition, which, despite transiently restoring inhibitory synaptic efficacy to levels at or beyond those of control, ultimately fails to be maintained. Using inhibitory interneuron-specific conditional knock-out and rescue mice, we further reveal that fragile X mental retardation protein function in amygdala inhibitory microcircuits can be segregated into distinct presynaptic and postsynaptic components. Collectively, these studies reveal a previously unrecognized complexity of disrupted neuronal development in FXS and therefore have direct implications for establishing novel temporal and region-specific targeted therapies to ameliorate core amygdala-based behavioral symptoms.


Assuntos
Tonsila do Cerebelo/patologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Homeostase/genética , Rede Nervosa/fisiologia , Inibição Neural/genética , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
3.
J Neurosci ; 30(29): 9929-38, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20660275

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by variable cognitive impairment and behavioral disturbances such as exaggerated fear, anxiety and gaze avoidance. Consistent with this, findings from human brain imaging studies suggest dysfunction of the amygdala. Underlying alterations in amygdala synaptic function in the Fmr1 knock-out (KO) mouse model of FXS, however, remain largely unexplored. Utilizing a combination of approaches, we uncover profound alterations in inhibitory neurotransmission in the amygdala of Fmr1 KO mice. We demonstrate a dramatic reduction in the frequency and amplitude of phasic IPSCs, tonic inhibitory currents, as well as in the number of inhibitory synapses in Fmr1 KO mice. Furthermore, we observe significant alterations in GABA availability, both intracellularly and at the synaptic cleft. Together, these findings identify abnormalities in basal and action potential-dependent inhibitory neurotransmission. Additionally, we reveal a significant neuronal hyperexcitability in principal neurons of the amygdala in Fmr1 KO mice, which is strikingly rescued by pharmacological augmentation of tonic inhibitory tone using the GABA agonist gaboxadol (THIP). Thus, our study reveals relevant inhibitory synaptic abnormalities in the amygdala in the Fmr1 KO brain and supports the notion that pharmacological approaches targeting the GABAergic system may be a viable therapeutic approach toward correcting amygdala-based symptoms in FXS.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/fisiopatologia , Agonistas GABAérgicos/farmacologia , Isoxazóis/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Modelos Animais de Doenças , Potenciais Evocados , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ácido gama-Aminobutírico/metabolismo
4.
J Neurophysiol ; 106(5): 2264-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795626

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.


Assuntos
Sincronização Cortical/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Inibição Neural/fisiologia , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Síndrome do Cromossomo X Frágil/genética , Interneurônios/fisiologia , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fenótipo , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Córtex Somatossensorial/citologia , Somatostatina/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia
5.
Dev Neurosci ; 33(5): 365-78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21893939

RESUMO

Fear is a universal response to a threat to one's body or social status. Disruption in the detection and response of the brain's fear system is commonly observed in a variety of neurodevelopmental disorders, including fragile X syndrome (FXS), a brain disorder characterized by variable cognitive impairment and behavioral disturbances such as social avoidance and anxiety. The amygdala is highly involved in mediating fear processing, and increasing evidence supports the idea that inhibitory circuits play a key role in regulating the flow of information associated with fear conditioning in the amygdala. Here, we review the known and potential importance of amygdala fear circuits in FXS, and how developmental studies are critical to understand the formation and function of neuronal circuits that modulate amygdala-based behaviors.


Assuntos
Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/fisiopatologia , Emoções , Medo/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Tonsila do Cerebelo/citologia , Animais , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Medo/psicologia , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Ácido gama-Aminobutírico/metabolismo
6.
Dev Neurosci ; 33(5): 395-403, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22067669

RESUMO

Hyperactivity, hypersensitivity to auditory stimuli, and exaggerated fear are common behavioral abnormalities observed in individuals with fragile X syndrome (FXS), a neurodevelopmental disorder that is the most common genetic cause of autism. Evidence from studies of the Fmr1 knockout (KO) mouse model of FXS supports the notion that impaired GABAergic transmission in different brain regions such as the amygdala, striatum or cerebral cortex is central to FXS behavioral abnormalities. This suggests that the GABAergic system might be an intriguing target to ameliorate some of the phenotypes in FXS. Our recent work revealed that THIP (gaboxadol), a GABA(A) receptor agonist, can restore principal neuron excitability deficits in the Fmr1 KO amygdala, suggesting that THIP may also restore some of the key behavioral abnormalities in Fmr1 KO mice. Here, we reveal that THIP significantly attenuated hyperactivity in Fmr1 KO mice, and reduced prepulse inhibition in a volume-dependent manner. In contrast, THIP did not reverse the deficits in cued fear or startle response. Thus, this study shows that enhancing GABAergic transmission can correct specific behavioral phenotypes of the Fmr1 KO mouse further supporting that targeting the GABAergic system, and specifically tonic inhibition, might be important for correcting or ameliorating some key behaviors in FXS.


Assuntos
Comportamento Animal/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/fisiopatologia , Agonistas de Receptores de GABA-A/uso terapêutico , Isoxazóis/uso terapêutico , Receptores de GABA-A/metabolismo , Animais , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Testes Neuropsicológicos , Ácido gama-Aminobutírico/metabolismo
7.
J Neurodev Disord ; 11(1): 35, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31839007

RESUMO

BACKGROUND: Down syndrome (DS), caused by the triplication of chromosome 21, results in a constellation of clinical features including changes in intellectual and motor function. Although altered neural development and function have been well described in people with DS, few studies have investigated the etiology underlying the observed motor phenotypes. Here, we examine the development, patterning, and organization of the spinal cord throughout life in the Ts65Dn mouse, a model that recapitulates many of the motor changes observed in people with DS. METHODS: Spinal cords from embryonic to adult animals were processed for gene and protein expression (immunofluorescence) to track the spatiotemporal development of excitatory and inhibitory neurons and oligodendroglia. Postnatal analyses were focused on the lumbar region due to the reflex and gait abnormalities found in Ts65Dn mice and locomotive alterations seen in people with DS. RESULTS: Between embryonic days E10.5 and E14.5, we found a larger motor neuron progenitor domain in Ts65Dn animals containing more OLIG2-expressing progenitor cells. These disturbed progenitors are delayed in motor neuron production but eventually generate a large number of ISL1+ migrating motor neurons. We found that higher numbers of PAX6+ and NKX2.2+ interneurons (INs) are also produced during this time frame. In the adult lumbar spinal cord, we found an increased level of Hb9 and a decreased level of Irx3 gene expression in trisomic animals. This was accompanied by an increase in Calretinin+ INs, but no changes in other neuronal populations. In aged Ts65Dn animals, both Calbindin+ and ChAT+ neurons were decreased compared to euploid controls. Additionally, in the dorsal corticospinal white matter tract, there were significantly fewer CC1+ mature OLs in 30- and 60-day old trisomic animals and this normalized to euploid levels at 10-11 months. In contrast, the mature OL population was increased in the lateral funiculus, an ascending white matter tract carrying sensory information. In 30-day old animals, we also found a decrease in the number of nodes of Ranvier in both tracts. This decrease normalized both in 60-day old and aged animals. CONCLUSIONS: We show marked changes in both spinal white matter and neuronal composition that change regionally over the life span. In the embryonic Ts65Dn spinal cord, we observe alterations in motor neuron production and migration. In the adult spinal cord, we observe changes in oligodendrocyte maturation and motor neuron loss, the latter of which has also been observed in human spinal cord tissue samples. This work uncovers multiple cellular perturbations during Ts65Dn development and aging, many of which may underlie the motor deficits found in DS.


Assuntos
Síndrome de Down/fisiopatologia , Neuroglia/fisiologia , Neurônios/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Masculino , Camundongos Transgênicos , Proteínas Nucleares , Fatores de Transcrição , Substância Branca/crescimento & desenvolvimento
8.
Dis Model Mech ; 11(6)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29716957

RESUMO

Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.


Assuntos
Comportamento Animal , Encéfalo/crescimento & desenvolvimento , Síndrome de Down/genética , Regulação da Expressão Gênica , Longevidade/genética , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Feminino , Genoma , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Neurogênese/genética , Neurônios/patologia , Fenótipo
9.
Neuron ; 89(6): 1208-1222, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26924435

RESUMO

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.


Assuntos
Encéfalo , Diferenciação Celular/genética , Síndrome de Down/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/metabolismo , Oligodendroglia/patologia , Potenciais de Ação/genética , Adolescente , Adulto , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular/fisiologia , Criança , Pré-Escolar , Cromossomos Humanos Par 17/genética , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Condução Nervosa/genética , Mudanças Depois da Morte , Trissomia/genética , Substância Branca/patologia , Substância Branca/ultraestrutura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA