Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(41): 20574-20583, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548428

RESUMO

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


Assuntos
Evolução Biológica , Eucariotos/virologia , Vírus Gigantes/genética , Phycodnaviridae/genética , Rodopsina/metabolismo , Água do Mar/virologia , Proteínas Virais/metabolismo , Ecossistema , Genoma Viral , Vírus Gigantes/classificação , Metagenômica , Oceanos e Mares , Phycodnaviridae/classificação , Filogenia , Prótons , Rodopsina/química , Rodopsina/genética , Proteínas Virais/química , Proteínas Virais/genética
2.
Curr Genet ; 63(3): 531-551, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27812735

RESUMO

Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.


Assuntos
Higromicina B/farmacologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Endossomos/efeitos dos fármacos , Endossomos/genética , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Qa-SNARE/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/genética
3.
Proteomics ; 16(21): 2759-2763, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27717283

RESUMO

Sphingolipids are essential components of eukaryotic cells with important functions in membrane biology and cellular signaling. Their levels are tightly controlled and coordinated with the abundance of other membrane lipids. How sphingolipid homeostasis is achieved is not yet well understood. Studies performed primarily in yeast showed that the phosphorylation states of several enzymes and regulators of sphingolipid synthesis are important, although a global understanding for such regulation is lacking. Here, we used high-resolution MS-based proteomics and phosphoproteomics to analyze the cellular response to sphingolipid synthesis inhibition. Our dataset reveals that changes in protein phosphorylation, rather than protein abundance, dominate the response to blocking sphingolipid synthesis. We identified Ypk signaling as a pathway likely to be activated under these conditions, and we identified potential Ypk1 target proteins. Our data provide a rich resource for on-going mechanistic studies of key elements of the cellular response to the depletion of sphingolipid levels and the maintenance of sphingolipid homeostasis. All MS data have been deposited in the ProteomeXchange with identifier PXD003854 (http://proteomecentral.proteomexchange.org/dataset/PXD003854).


Assuntos
Proteínas Serina-Treonina Quinases/genética , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/genética , Homeostase/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo
4.
J Biol Chem ; 290(7): 4238-47, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25519905

RESUMO

Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis.


Assuntos
Acetiltransferases/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Homeostase , Metabolismo dos Lipídeos , Fosforilação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais
5.
Mol Cell Biochem ; 346(1-2): 187-95, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20936498

RESUMO

The yeast vacuole is functionally and structurally equivalent to the mammalian lysosome. Delivery of resident and cargo proteins to the lysosome is vital for proper cellular operations, and failure to correctly target proteins to the organelle is correlated with the development of neurodegenerative and lysosomal storage diseases. We previously reported a novel mutant screen for vacuolar trafficking defects in yeast Saccharomyces cerevisiae that resulted in the isolation of env1, an allelic mutant of VPS35. As a member of the retromer complex, Vps35p binds directly to cargos and facilitates their retrograde transport to trans Golgi from endosomes. Our previous studies established that env1 exhibits unique pleiotropic phenotype in comparison to other tested VPS35 alleles including severe growth sensitivity to hygromycin B and internal accumulation of the precursor form of the vacuolar enzyme carboxypeptidase Y. Here, through a combination of sub-cellular fractionation and indirect immunofluorescence microscopy, we confirm and extend the unique phenotype of env1 to processing and localization of additional proteins within the vacuolar trafficking pathway. In comparative studies with a null and an allelic mutant of VPS35, env1 exhibited unique processing defects of retromer-independent vacuolar membrane enzyme alkaline phosphatase at the vacuole and significant Golgi localization of retromer cargos Vps10p and Kex2p despite compromised trafficking at the Golgi and late endosome interface.


Assuntos
Genes env , Complexo de Golgi/metabolismo , Mutação , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sequência de Bases , Primers do DNA , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
6.
ISME J ; 12(4): 1047-1060, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29476140

RESUMO

Proteorhodopsin is a light-activated retinal-containing proton pump found in many marine bacteria. These photoproteins are globally distributed in the ocean's photic zone and are capable of generating a proton motive force across the cell membrane. We investigated the phylogenetic diversity, distribution, and abundance of proteorhodopsin encoding genes in free-living bacterioplankton in the North Pacific Subtropical Gyre, leveraging a gene catalog derived from metagenomic samples from the ocean's surface to 1000 m depth. Proteorhodopsin genes were identified at all depths sampled, but were most abundant at depths shallower than 200 m. The majority of proteorhodopsin gene sequences (60.9%) belonged to members of the SAR11 lineage, with remaining sequences distributed among other diverse taxa. We observed variations in the conserved residues involved in ion pumping and spectral tuning, and biochemically confirmed four different proton pumping proteorhodopsin motifs, including one unique to deep-water SAR11. We also identified a new group of putative proteorhodopsins having unknown function. Our results reveal a broad organismal and unexpected depth distribution for different proteorhodopsin types, as well as substantial within-taxon variability. These data provide a framework for exploring the ecological relevance of proteorhodopsins and their spatiotemporal variation and function in heterotrophic bacteria in the open ocean.


Assuntos
Bacteriorodopsinas/classificação , Rodopsinas Microbianas/classificação , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Metagenômica , Oceano Pacífico , Filogenia , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Água do Mar/microbiologia
7.
Mol Biol Cell ; 25(18): 2797-806, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25057013

RESUMO

The plasma membrane delineates the cell and mediates its communication and material exchange with the environment. Many processes of the plasma membrane occur through interactions of proteins with phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2), which is highly enriched in this membrane and is a key determinant of its identity. Eisosomes function in lateral organization of the plasma membrane, but the molecular function of their major protein subunits, the BAR domain-containing proteins Pil1 and Lsp1, is poorly understood. Here we show that eisosomes interact with the PI(4,5)P2 phosphatase Inp51/Sjl1, thereby recruiting it to the plasma membrane. Pil1 is essential for plasma membrane localization and function of Inp51 but not for the homologous phosphatidylinositol bisphosphate phosphatases Inp52/Sjl2 and Inp53/Sjl3. Consistent with this, absence of Pil1 increases total and available PI(4,5)P2 levels at the plasma membrane. On the basis of these findings, we propose a model in which the eisosomes function in maintaining PI(4,5)P2 levels by Inp51/Sjl1 recruitment.


Assuntos
Organelas/enzimologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular , Organelas/fisiologia , Fosfoproteínas/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA