Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Small ; : e2311064, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396219

RESUMO

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

2.
J Exp Bot ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634646

RESUMO

Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate=leaf area. This leaf area must provide carbon to the metabolically active sapwood volume (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work suggests that the notion that sapwood increases per unit leaf area with height growth requires revision.

3.
Ann Bot ; 134(1): 19-42, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634673

RESUMO

BACKGROUND: The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE: We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS: Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.


Assuntos
Árvores , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Permeabilidade , Secas , Modelos Biológicos , Madeira/fisiologia , Madeira/anatomia & histologia , Água/fisiologia , Água/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039710

RESUMO

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.


Assuntos
Evolução Biológica , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Água/fisiologia , Xilema/anatomia & histologia
5.
Small ; 19(42): e2303131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344349

RESUMO

Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.

6.
New Phytol ; 239(5): 1665-1678, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381089

RESUMO

Nutrient allocation is central to understanding plant ecological strategies and forest roles in biogeochemical cycles. Thought to be mainly driven by environmental conditions, nutrient allocation to woody organs, especially to living tissues, is poorly understood. To examine the role of differences in living tissues (sapwood, SW, vs inner bark, IB), organs, ecological strategies, and environmental conditions in driving nutrient allocation and scaling in woody plants, we quantified nitrogen and phosphorus in main stems and coarse roots of 45 species from three tropical ecosystems with contrasting precipitation, fire regime, and soil nutrients. Nutrient concentration variation was mostly explained by differences between IB and SW, followed by differences between species and, in the case of phosphorus, soil nutrient availability. IB nutrient concentrations were four times those of SW, with root tissues having slightly higher concentrations than stem tissues. Scaling between IB and SW, and between stems and roots, was generally isometric. In cross-sections, IB contributed half of total nutrients in roots and a third in stems. Our results highlight the important role of IB and SW for nutrient storage, the coordination in nutrient allocation across tissues and organs, and the need to differentiate between IB and SW to understand plant nutrient allocation.


Assuntos
Ecossistema , Nitrogênio , Fósforo , Casca de Planta , Folhas de Planta , Árvores , Solo , Raízes de Plantas , Caules de Planta
7.
Chemistry ; 29(34): e202300624, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-36867728

RESUMO

Polycyclic aromatic endoperoxides are important sources of singlet oxygen (1 O2 ) and their formation from polyacenes is well established. Anthracene carboxyimides are of particular interest as they exhibit excellent antitumor activity and possess unique photochemical properties. However, the photooxygenation of the synthetically versatile anthracene carboxyimide moiety has not been reported due to its competing [4+4] photodimerization reaction. Herein, we describe the reversible photo-oxidation of an anthracene carboxyimide. X-ray crystallographic analysis surprisingly revealed the formation of a racemic mixture of chiral hydroperoxides, rather than the expected endoperoxide. The photoproduct undergoes both photo- and thermolysis to form 1 O2 . Activation parameters were derived for the thermolysis and the mechanisms of photooxygenation and thermolysis are discussed. The anthracene carboxyimide also showed high selectivity and sensitivity for nitrite anions in acidic aqueous media and possessed stimuli-responsive behaviour.

8.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049979

RESUMO

Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and synthesized. Their photophysical properties were studied in various solvents, such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-propanol, ethanol, dimethyl sulfoxide, methanol, and water. Solvent polarizability resulted in a solvatochromism effect for all three rotors and their absorption and emission spectra were analyzed via the Lippert-Mataga equation and multilinear analysis using Kamlet-Taft and Catalán parameters. The rotors exhibited red-shifted absorption and emission bands in solution on account of differences in their torsion angle. The three rotors demonstrated strong fluorescence in a high-viscosity environment due to restricted intramolecular rotation. Investigations carried out under varying ratios of water to glycerol were explored to probe the viscosity-based changes in their optical properties. A good linear correlation between the logarithms of fluorescence intensity and solution viscosity for two rotors, namely 2DiAC∙Cl and 9DiAC∙Cl, was observed as the percentage of glycerol increased. Excellent exponential regression between the viscosity-related temperature and emission intensity was observed for all three investigated rotors.

9.
Syst Biol ; 70(6): 1272-1281, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33410880

RESUMO

It is common for studies that employ the comparative method for the study of adaptation, that is, documentation of potentially adaptive across-species patterns of trait-environment or trait-trait correlation, to be designated as "macroevolutionary." Authors are justified in using "macroevolution" in this way by appeal to definitions such as "evolution above the species level." I argue that regarding the comparative method as "macroevolutionary" is harmful because it hides in serious ways the true causal content of hypotheses tested with the comparative method. The comparative method is a means of testing hypotheses of adaptation and their alternatives. Adaptation is a population-level phenomenon, involving heritable interindividual variation that is associated with fitness differences. For example, given heritable intrapopulational variation, more streamlined individuals in populations of fast-moving aquatic animals have higher locomotory efficiency and thus better survivorship and more resources directed to reproduction than less streamlined ones. Direct evidence consistent with this population-level scenario includes the observation that many unrelated species of fast-moving aquatic animals have similar streamlined shapes, an example of the comparative method. Crucial to note in this example is that although the data are observed across species, the comparative method for studying adaptation tests hypotheses regarding standard population-level natural selection with no content that can be construed as "macro." Even less "macro," individual-level developmental dynamics can limit or bias the range of variants available for selection. Calling any of these studies "macroevolutionary" implies that some additional process is at work, shrouding the need to test adaptation hypotheses and study the range of variants that can be produced in development. [Adaptation; comparative method; constraint; macroevolution; optimality models; population biology.].


Assuntos
Adaptação Fisiológica , Evolução Biológica , Adaptação Fisiológica/genética , Animais , Humanos , Fenótipo , Filogenia , Seleção Genética
10.
Am J Bot ; 109(6): 856-873, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435252

RESUMO

PREMISE: Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS: We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS: Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS: Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.


Assuntos
Magnoliopsida , Meio Ambiente , Magnoliopsida/fisiologia , Síndrome , Água , Madeira/anatomia & histologia , Xilema/fisiologia
11.
J Am Chem Soc ; 143(9): 3407-3415, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629851

RESUMO

A bowl-shaped calix[4]arene with its exciting host-guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal-organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.

12.
New Phytol ; 229(4): 1877-1893, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32984967

RESUMO

In the stems of terrestrial vascular plants studied to date, the diameter of xylem water-conducting conduits D widens predictably with distance from the stem tip L approximating D âˆ Lb , with b ≈ 0.2. Because conduit diameter is central for conductance, it is essential to understand the cause of this remarkably pervasive pattern. We give reason to suspect that tip-to-base conduit widening is an adaptation, favored by natural selection because widening helps minimize the increase in hydraulic resistance that would otherwise occur as an individual stem grows longer and conductive path length increases. Evidence consistent with adaptation includes optimality models that predict the 0.2 exponent. The fact that this prediction can be made with a simple model of a single capillary, omitting much biological detail, itself makes numerous important predictions, e.g. that pit resistance must scale isometrically with conduit resistance. The idea that tip-to-base conduit widening has a nonadaptive cause, with temperature, drought, or turgor limiting the conduit diameters that plants are able to produce, is less consistent with the data than an adaptive explanation. We identify empirical priorities for testing the cause of tip-to-base conduit widening and underscore the need to study plant hydraulic systems leaf to root as integrated wholes.


Assuntos
Aclimatação , Xilema , Adaptação Fisiológica , Secas , Folhas de Planta , Caules de Planta , Água
13.
New Phytol ; 229(2): 665-672, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697862

RESUMO

Understanding how floral traits affect reproduction is key for understanding genetic diversity, speciation, and trait evolution in the face of global changes and pollinator decline. However, there has not yet been a unified framework to characterize the major trade-offs and axes of floral trait variation. Here, we propose the development of a floral economics spectrum (FES) that incorporates the multiple pathways by which floral traits can be shaped by multiple agents of selection acting on multiple flower functions. For example, while pollinator-mediated selection has been considered the primary factor affecting flower evolution, selection by nonpollinator agents can reinforce or oppose pollinator selection, and, therefore, affect floral trait variation. In addition to pollinators, the FES should consider nonpollinator biotic agents and floral physiological costs, broadening the drivers of floral traits beyond pollinators. We discuss how coordinated evolution and trade-offs among floral traits and between floral and vegetative traits may influence the distribution of floral traits across biomes and lineages, thereby influencing organismal evolution and community assembly.


Assuntos
Flores , Polinização , Fenótipo , Reprodução
14.
Plant Cell Environ ; 44(1): 156-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33034374

RESUMO

Non-structural carbohydrates (NSC) are crucial for forest resilience, but little is known regarding the role of bark in NSC storage. However, bark's abundance in woody stems and its large living fraction make it potentially key for NSC storage. We quantified total NSC, soluble sugar (SS) and starch concentrations in the most living region of bark (inner bark, IB), and sapwood of twigs, trunks and roots of 45 woody species from three contrasting tropical climates spanning global extremes of bark diversity and wide phylogenetic diversity. NSC concentrations were similar (total NSC, starch) or higher (SS) in IB than wood, with concentrations co-varying strongly. NSC concentrations varied widely across organs and species within communities and were not significantly affected by climate, leaf habit or the presence of photosynthetic bark. Starch concentration tended to increase with density, but only in wood. IB contributed substantially to NSC storage, accounting for 17-36% of total NSC, 23-47% of SS and 15-33% of starch pools. Further examination of the drivers of variation in IB NSC concentration, and taking into account the substantial contribution of IB to NSC pools, will be crucial to understand the role of storage in plant environmental adaptation.


Assuntos
Metabolismo dos Carboidratos , Casca de Planta/metabolismo , Árvores/metabolismo , Bursera/metabolismo , Carboidratos/análise , Diospyros/metabolismo , Lamiaceae/metabolismo , Casca de Planta/anatomia & histologia , Casca de Planta/química , Clima Tropical , Água/metabolismo , Madeira/metabolismo
15.
Chemistry ; 27(36): 9360-9371, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33831265

RESUMO

Stimuli-responsive chromic materials such as photochromics, hydrochromics, thermochromics, and electrochromics have a long history of capturing the attention of scientists due to their potential industrial applications and novelty in popular culture. However, hybrid chromic materials that combine two or more stimuli-triggered color changing properties are not so well known. Herein, we report a design strategy that has led to a series of emissive 1,8-naphthalimide-viologen dyads which exhibit unusual dual photochromic and hydrochromic switching behavior in the solid-state when embedded in a cellulose matrix. This behavior manifests as reversible solid state fluorescence hydrochromism upon changes in atmospheric relative humidity (RH), and reversible solid state photochromism upon generation of a cellulose-stabilized viologen radical cation. In this design strategy, the bipyridinium unit serves as both a water-sensitive receptor for the hydrochromic fluorophore-receptor system, and a photochromic group, capable of eliciting its own visible colorimetric response, generating a fluorescence quenching radical cation with prolonged exposure to ultraviolet (UV) light. These dyes can be inkjet-printed onto cellulose paper or drop-cast as cellulose powder-based films and can be unidirectionally cycled between three different states which can be characteristically visualized under UV light or visible light. The material's photochromism, hydrochromism, and underlying mechanism of action was investigated using computational analysis, dynamic vapor sorption/desorption isotherms, electron paramagnetic resonance spectroscopy, and variable humidity UV-Vis adsorption and fluorescence spectroscopies.


Assuntos
Naftalimidas , Viologênios , Celulose , Luz , Raios Ultravioleta
16.
Arch Biochem Biophys ; 711: 109019, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34478730

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is demonstrated to be closely related to the disorder of gut microbiota and the intestinal mucosal barrier. Luteolin is a natural flavonoid with various activities. We aimed to investigate whether Luteolin can alleviate NAFLD and its possible mechanism involving the gut-liver axis. A rat NAFLD model was established by feeding a high-fat diet (HFD), and Luteolin was administered intragastrically. The effects of Luteolin on liver biochemical parameters, intestinal histopathology and integrity, gut microbiota, lipopolysaccharides (LPS), inflammatory cytokines, and the Toll-like receptor 4 (TLR4) signaling pathway were evaluated. We found that Luteolin restored the expression of the tight junction proteins in the intestine and ameliorated the increase permeability of the intestinal mucosa to Fluorescein isothiocyanate-dextran (FD4) caused by a high-fat diet, thus enhancing the function of the intestinal barrier. In addition, Luteolin inhibited the TLR4 signaling pathway in the liver, thereby reducing the secretion of pro-inflammatory factors and alleviating NAFLD. 16S rRNA gene sequencing revealed that Luteolin intervention significantly altered the composition of the gut microbiota in NAFLD rats and increased the richness of gut microbiota. Luteolin alleviates NAFLD in rats via restoration and repair of the damaged intestinal mucosal barrier and microbiota imbalance.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Luteolina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Dieta Hiperlipídica , Disbiose/tratamento farmacológico , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Permeabilidade , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(29): 7551-7556, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967148

RESUMO

Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide.


Assuntos
Aclimatação , Temperatura Baixa , Magnoliopsida/crescimento & desenvolvimento , Tundra , Desidratação
18.
J Am Chem Soc ; 142(31): 13450-13458, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32649828

RESUMO

Covalent organic frameworks (COFs) with intrinsic, tunable, and uniform pores are potent building blocks for separation membranes, yet poor processing ability and long processing time remain grand challenges. Herein, we report an engineered solid-vapor interface to fabricate a highly crystalline two-dimensional COF membrane with a thickness of 120 nm in 9 h, which is 8 times faster than that in the reported literature. Due to the ultrathin nature and ordered pores, the membrane exhibited an ultrahigh permeance (water, ∼411 L m-2 h-1 bar-1 and acetonitrile, ∼583 L m-2 h-1 bar-1) and excellent rejection of dye molecules larger than 1.4 nm (>98%). The membrane exhibited long-term operation which confirmed its outstanding stability. Our solid-vapor interfacial polymerization method may evolve into a generic platform to fabricate COFs and other organic framework membranes.

19.
New Phytol ; 225(6): 2347-2355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31657018

RESUMO

Variation in xylem conduit diameter traditionally has been explained by climate, whereas other evidence suggests that tree height is the main driver of conduit diameter. The effect of climate versus stem length on vessel diameter was tested in two tree species (Embothrium coccineum, Nothofagus antarctica) that both span an exceptionally wide precipitation gradient (2300-500 mm). To see whether, when taking stem length into account, plants in wetter areas had wider vessels, not only the scaling of vessel diameter at the stem base across individuals of different heights, but also the tip-to-base scaling along individuals of similar heights across sites were examined. Within each species, plants of similar heights had similar mean vessel diameters and similar tip-to-base widening of vessel diameter, regardless of climate, with the slopes and intercepts of the vessel diameter-stem length relationship remaining invariant within species across climates. This study focusing on within-species variation--thus, avoiding noise associated with the great morphological variation across species--showed unequivocally that plant size, not climate, is the main driver of variation in vessel diameter. Therefore, to the extent that climate selects for differing vessel diameters, it will inevitably also affect plant height.


Assuntos
Proteaceae , Árvores , Clima , Madeira , Xilema
20.
Plant Cell Environ ; 43(12): 3068-3080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32909290

RESUMO

While plant height is the main driver of variation in mean vessel diameter at the stem base (VD) across angiosperms, climate, specifically temperature, does play an explanatory role, with vessels being wider with warmer temperature for plants of the same height. Using a comparative approach sampling 537 species of angiosperms across 19 communities, we rejected selection favouring freezing-induced embolism resistance as being able to account for wider vessels for a given height in warmer climates. Instead, we give reason to suspect that higher vapour pressure deficit (VPD) accounts for the positive scaling of height-standardized VD (and potential xylem conductance) with temperature. Selection likely favours conductive systems that are able to meet the higher transpirational demand of warmer climates, which have higher VPD, resulting in wider vessels for a given height. At the same time, wider vessels are likely more vulnerable to dysfunction. With future climates likely to experience ever greater extremes of VPD, future forests could be increasingly vulnerable.


Assuntos
Plantas/anatomia & histologia , Xilema/anatomia & histologia , Clima , Congelamento , Transpiração Vegetal , Plantas/metabolismo , Chuva , Temperatura , Pressão de Vapor , Xilema/metabolismo , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA