Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Radiology ; 301(2): 295-308, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427465

RESUMO

Background Suppression of background parenchymal enhancement (BPE) is commonly observed after neoadjuvant chemotherapy (NAC) at contrast-enhanced breast MRI. It was hypothesized that nonsuppressed BPE may be associated with inferior response to NAC. Purpose To investigate the relationship between lack of BPE suppression and pathologic response. Materials and Methods A retrospective review was performed for women with menopausal status data who were treated for breast cancer by one of 10 drug arms (standard NAC with or without experimental agents) between May 2010 and November 2016 in the Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2, or I-SPY 2 TRIAL (NCT01042379). Patients underwent MRI at four points: before treatment (T0), early treatment (T1), interregimen (T2), and before surgery (T3). BPE was quantitatively measured by using automated fibroglandular tissue segmentation. To test the hypothesis effectively, a subset of examinations with BPE with high-quality segmentation was selected. BPE change from T0 was defined as suppressed or nonsuppressed for each point. The Fisher exact test and the Z tests of proportions with Yates continuity correction were used to examine the relationship between BPE suppression and pathologic complete response (pCR) in hormone receptor (HR)-positive and HR-negative cohorts. Results A total of 3528 MRI scans from 882 patients (mean age, 48 years ± 10 [standard deviation]) were reviewed and the subset of patients with high-quality BPE segmentation was determined (T1, 433 patients; T2, 396 patients; T3, 380 patients). In the HR-positive cohort, an association between lack of BPE suppression and lower pCR rate was detected at T2 (nonsuppressed vs suppressed, 11.8% [six of 51] vs 28.9% [50 of 173]; difference, 17.1% [95% CI: 4.7, 29.5]; P = .02) and T3 (nonsuppressed vs suppressed, 5.3% [two of 38] vs 27.4% [48 of 175]; difference, 22.2% [95% CI: 10.9, 33.5]; P = .003). In the HR-negative cohort, patients with nonsuppressed BPE had lower estimated pCR rate at all points, but the P values for the association were all greater than .05. Conclusions In hormone receptor-positive breast cancer, lack of background parenchymal enhancement suppression may indicate inferior treatment response. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Philpotts in this issue.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Meios de Contraste , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Adulto , Idoso , Mama/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
2.
J Magn Reson Imaging ; 53(1): 271-282, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614125

RESUMO

BACKGROUND: Multi-b-valued/multi-shell diffusion provides potentially valuable metrics in breast MRI but suffers from low signal-to-noise ratio and has potentially long scan times. PURPOSE: To investigate the effects of model-based denoising with no loss of spatial resolution on multi-shell breast diffusion MRI; to determine the effects of downsampling on multi-shell diffusion; and to quantify these effects in multi-b-valued (three directions per b-value) acquisitions. STUDY TYPE: Prospective ("fully-sampled" multi-shell) and retrospective longitudinal (multi-b). SUBJECTS: One normal subject (multi-shell) and 10 breast cancer subjects imaging at four timepoints (multi-b). FIELD STRENGTH/SEQUENCE: 3T multi-shell acquisition and 1.5T multi-b acquisition. ASSESSMENT: The "fully-sampled" multi-shell acquisition was retrospectively downsampled to determine the bias and error from downsampling. Mean, axial/parallel, radial diffusivity, and fractional anisotropy (FA) were analyzed. Denoising was applied retrospectively to the multi-b-valued breast cancer subject dataset and assessed subjectively for image noise level and tumor conspicuity. STATISTICAL TESTS: Parametric paired t-test (P < 0.05 considered statistically significant) on mean and coefficient of variation of each metric-the apparent diffusion coefficient (ADC) from all b-values, fast ADC, slow ADC, and perfusion fraction. Paired and two-sample t-tests for each metric comparing normal and tumor tissue. RESULTS: In the multi-shell data, denoising effectively suppressed FA (-45% to -78%), with small biases in mean diffusivity (-5% in normal, +23% in tumor, and -4% in vascular compartments). In the multi-b data, denoising resulted in small biases to the ADC metrics in tumor and normal contralateral tissue (by -3% to +11%), but greatly reduced the coefficient of variation for every metric (by -1% to -24%). Denoising improved differentiation of tumor and normal tissue regions in most metrics and timepoints; subjectively, image noise level and tumor conspicuity were improved in the fast ADC maps. DATA CONCLUSION: Model-based denoising effectively suppressed erroneously high FA and improved the accuracy of diffusivity metrics. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Mama , Imagem de Difusão por Ressonância Magnética , Mama/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Eur Radiol ; 31(2): 975-982, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32870394

RESUMO

OBJECTIVES: To assess whether no enhancement on pre-treatment MRI can rule out malignancy of additional US mass(es) initially assessed as BI-RADS 3 or 4 in women with newly diagnosed breast cancer. METHODS: This retrospective study included consecutive women from 2010-2018 with newly diagnosed breast cancer; at least one additional breast mass (distinct from index cancer) assigned a BI-RADS 3 or 4 on US; and a bilateral contrast-enhanced breast MRI performed within 90 days of US. All malignant masses were pathologically proven; benign masses were pathologically proven or defined as showing at least 2 years of imaging stability. Incidence of malignant masses and NPV were calculated on a per-patient level using proportions and exact 95% CIs. RESULTS: In 230 patients with 309 additional masses, 140/309 (45%) masses did not enhance while 169/309 (55%) enhanced on MRI. Of the 140 masses seen in 105 women (mean age, 54 years; range 28-82) with no enhancement on MRI, all had adequate follow-up and 140/140 (100%) were benign, of which 89/140 (63.6%) were pathologically proven and 51/140 (36.4%) demonstrated at least 2 years of imaging stability. Pre-treatment MRI demonstrating no enhancement of US mass correlate(s) had an NPV of 100% (95% CI 96.7-100.0). CONCLUSIONS: All BI-RADS 3 and 4 US masses with a non-enhancing correlate on pre-treatment MRI were benign. The incorporation of MRI, when ordered by the referring physician, may decrease unnecessary follow-up imaging and/or biopsy if the initial US BI-RADS assessment and management recommendation were to be retrospectively updated. KEY POINTS: • Of 309 BI-RADS 3 or 4 US masses with a corresponding mass on MRI, 140/309 (45%) demonstrated no enhancement whereas 169/309 (55%) demonstrated enhancement • All masses classified as BI-RADS 3 or 4 on US without enhancement on MRI were benign • MRI can rule out malignancy in non-enhancing US masses with an NPV of 100.


Assuntos
Neoplasias da Mama , Mama , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Retrospectivos
4.
Breast Cancer Res ; 22(1): 57, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466777

RESUMO

BACKGROUND: For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior to surgery. METHODS: This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1) pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique. RESULTS: Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of 222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13 pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate (P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets. CONCLUSIONS: This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately classifies pCR on MRI post-NAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Aprendizado de Máquina , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Lobular/diagnóstico por imagem , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/patologia , Carcinoma Lobular/cirurgia , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Terapia Neoadjuvante , Prognóstico , Curva ROC , Estudos Retrospectivos
5.
Breast Cancer Res ; 22(1): 58, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466799

RESUMO

BACKGROUND: Ultrafast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-derived kinetic parameters have demonstrated at least equivalent accuracy to standard DCE-MRI in differentiating malignant from benign breast lesions. However, it is unclear if they have any efficacy as prognostic imaging markers. The aim of this study was to investigate the relationship between ultrafast DCE-MRI-derived kinetic parameters and breast cancer characteristics. METHODS: Consecutive breast MRI examinations between February 2017 and January 2018 were retrospectively reviewed to determine those examinations that meet the following inclusion criteria: (1) BI-RADS 4-6 MRI performed on a 3T scanner with a 16-channel breast coil and (2) a hybrid clinical protocol with 15 phases of ultrafast DCE-MRI (temporal resolution of 2.7-4.6 s) followed by early and delayed phases of standard DCE-MRI. The study included 125 examinations with 142 biopsy-proven breast cancer lesions. Ultrafast DCE-MRI-derived kinetic parameters (maximum slope [MS] and bolus arrival time [BAT]) were calculated for the entire volume of each lesion. Comparisons of these parameters between different cancer characteristics were made using generalized estimating equations, accounting for the presence of multiple lesions per patient. All comparisons were exploratory and adjustment for multiple comparisons was not performed; P values < 0.05 were considered statistically significant. RESULTS: Significantly larger MS and shorter BAT were observed for invasive carcinoma than ductal carcinoma in situ (DCIS) (P < 0.001 and P = 0.008, respectively). Significantly shorter BAT was observed for invasive carcinomas with more aggressive characteristics than those with less aggressive characteristics: grade 3 vs. grades 1-2 (P = 0.025), invasive ductal carcinoma vs. invasive lobular carcinoma (P = 0.002), and triple negative or HER2 type vs. luminal type (P < 0.001). CONCLUSIONS: Ultrafast DCE-MRI-derived parameters showed a strong relationship with some breast cancer characteristics, especially histopathology and molecular subtype.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Adulto , Idoso , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Carcinoma Lobular/diagnóstico por imagem , Carcinoma Lobular/patologia , Carcinoma Lobular/terapia , Meios de Contraste , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto Jovem
6.
J Magn Reson Imaging ; 51(1): 164-174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215107

RESUMO

BACKGROUND: Ultrafast dynamic contrast-enhanced (UF-DCE) breast MRI is considered a promising method of accelerated breast MRI. However, the value of new kinetic parameters derived from UF-DCE need clinical evaluation. PURPOSE: To evaluate the diagnostic performance of the maximum slope (MS), time to enhancement (TTE), and time interval between arterial and venous visualization (AVI) derived from UF-DCE MRI using compressed sensing (CS). STUDY TYPE: Retrospective. POPULATION: Seventy-five patients with histologically proven breast lesions. The total number of analyzed lesions was 90 (61 malignant and 29 benign). FIELD STRENGTH/SEQUENCE: 3T MRI with UF-DCE MRI based on the 3D gradient-echo volumetric interpolated breath-hold examination (VIBE) sequence using incoherent k-space sampling combined with a CS reconstruction followed by conventional DCE MRI. ASSESSMENT: The diagnostic performance of the MS, TTE, AVI, and conventional kinetic analysis was analyzed and compared with histology. STATISTICAL TESTS: Wilcoxon rank sum test, receiver operating characteristic analysis. RESULTS: The MS was larger and the TTE and AVI were smaller for malignant lesions compared with benign lesions: MS: 29.3%/s and 18.4%/s (P < 0.001), TTE: 7.0 and 12.0 seconds (P < 0.001), AVI: 2.7 and 4.4 frames (P = 0.006) for malignant and benign lesions. The discriminating power of the MS (area under the curve [AUC], 0.76) was slightly better than that of conventional kinetic analysis (AUC, 0.69) and comparable to that of the TTE and AVI (AUC, 0.78 and 0.76 for TTE and AVI, respectively). Invasive lobular carcinoma had smaller MS (21.8%/s) among malignant lesions (29.3%/s). DATA CONCLUSION: The MS, TTE, and AVI can be used to evaluate breast lesions with clinical performance equivalent to that of conventional kinetic analysis. These parameters vary among histologies. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:164-174.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Mama/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
7.
Eur Radiol ; 30(2): 756-766, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31468162

RESUMO

OBJECTIVES: This study aims to evaluate ultrafast DCE-MRI-derived kinetic parameters that reflect contrast agent inflow effects in differentiating between subcentimeter BI-RADS 4-5 breast carcinomas and benign lesions. METHODS: We retrospectively reviewed consecutive 3-T MRI performed from February to October 2017, during which ultrafast DCE-MRI was performed as part of a hybrid clinical protocol with conventional DCE-MRI. In total, 301 female patients with 369 biopsy-proven breast lesions were included. Ultrafast DCE-MRI was acquired continuously over approximately 60 s (temporal resolution, 2.7-7.1 s/phase) starting simultaneously with the start of contrast injection. Four ultrafast DCE-MRI-derived kinetic parameters (maximum slope [MS], contrast enhancement ratio [CER], bolus arrival time [BAT], and initial area under gadolinium contrast agent concentration [IAUGC]) and one conventional DCE-MRI-derived kinetic parameter (signal enhancement ratio [SER]) were calculated for each lesion. Wilcoxon rank sum test or Fisher's exact test was performed to compare kinetic parameters, volume, diameter, age, and BI-RADS morphological descriptors between subcentimeter carcinomas and benign lesions. Univariate/multivariate logistic regression analyses were performed to determine predictive parameters for subcentimeter carcinomas. RESULTS: In total, 125 lesions (26 carcinomas and 99 benign lesions) were identified as BI-RADS 4-5 subcentimeter lesions. Subcentimeter carcinomas demonstrated significantly larger MS and SER and shorter BAT than benign lesions (p = 0.0117, 0.0046, and 0.0102, respectively). MS, BAT, and age were determined as significantly predictive for subcentimeter carcinoma (p = 0.0208, 0.0023, and < 0.0001, respectively). CONCLUSIONS: Ultrafast DCE-MRI-derived kinetic parameters may be useful in differentiating subcentimeter BI-RADS 4 and 5 carcinomas from benign lesions. KEY POINTS: • Ultrafast DCE-MRI can generate kinetic parameters, effectively differentiating breast carcinomas from benign lesions. • Subcentimeter carcinomas demonstrated significantly larger maximum slope and shorter bolus arrival time than benign lesions. • Maximum slope and bolus arrival time contribute to better management of suspicious subcentimeter breast lesions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Diagnóstico Diferencial , Feminino , Humanos , Cinética , Pessoa de Meia-Idade , Estudos Retrospectivos
8.
J Magn Reson Imaging ; 50(5): 1468-1477, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30916835

RESUMO

BACKGROUND: Small breast lesions are difficult to visually categorize due to the inherent lack of morphological and kinetic detail. PURPOSE: To assess the efficacy of radiomics analysis in discriminating small benign and malignant lesions utilizing model free parameter maps. STUDY TYPE: Retrospective, single center. POPULATION: In all, 149 patients, with a total of 165 lesions scored as BI-RADS 4 or 5 on MRI, with an enhancing volume of <0.52 cm3 . FIELD STRENGTH/SEQUENCE: Higher spatial resolution T1 -weighted dynamic contrast-enhanced imaging with a temporal resolution of ~90 seconds performed at 3.0T. ASSESSMENT: Parameter maps reflecting initial enhancement, overall enhancement, area under the enhancement curve, and washout were generated. Heterogeneity measures based on first-order statistics, gray level co-occurrence matrices, run length matrices, size zone matrices, and neighborhood gray tone difference matrices were calculated. Data were split into a training dataset (~75% of cases) and a test dataset (~25% of cases). STATISTICAL TESTS: Comparison of medians was assessed using the nonparametric Mann-Whitney U-test. The Spearman rank correlation coefficient was utilized to determine significant correlations between individual features. Finally, a support vector machine was employed to build multiparametric predictive models. RESULTS: Univariate analysis revealed significant differences between benign and malignant lesions for 58/133 calculated features (P < 0.05). Support vector machine analysis resulted in areas under the curve (AUCs) ranging from 0.75-0.81. High negative (>89%) and positive predictive values (>83%) were found for all models. DATA CONCLUSION: Radiomics analysis of small contrast-enhancing breast lesions is of value. Texture features calculated from later timepoints on the enhancement curve appear to offer limited additional value when compared with features determined from initial enhancement for this patient cohort. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1468-1477.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Idoso , Algoritmos , Feminino , Humanos , Cinética , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Máquina de Vetores de Suporte , Adulto Jovem
9.
Radiology ; 287(2): 432-441, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29095673

RESUMO

Purpose To investigate the performance of integrated approaches that combined intravoxel incoherent motion (IVIM) and non-Gaussian diffusion parameters compared with the Breast Imaging and Reporting Data System (BI-RADS) to establish multiparameter thresholds scores or probabilities by using Bayesian analysis to distinguish malignant from benign breast lesions and their correlation with molecular prognostic factors. Materials and Methods Between May 2013 and March 2015, 411 patients were prospectively enrolled and 199 patients (allocated to training [n = 99] and validation [n = 100] sets) were included in this study. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) by using IVIM and kurtosis models were estimated from diffusion-weighted image series (16 b values up to 2500 sec/mm2), as well as a synthetic ADC (sADC) calculated by using b values of 200 and 1500 (sADC200-1500) and a standard ADC calculated by using b values of 0 and 800 sec/mm2 (ADC0-800). The performance of two diagnostic approaches (combined parameter thresholds and Bayesian analysis) combining IVIM and diffusion parameters was evaluated and compared with BI-RADS performance. The Mann-Whitney U test and a nonparametric multiple comparison test were used to compare their performance to determine benignity or malignancy and as molecular prognostic biomarkers and subtypes of breast cancer. Results Significant differences were found between malignant and benign breast lesions for IVIM and non-Gaussian diffusion parameters (ADC0, K, fIVIM, fIVIM · D*, sADC200-1500, and ADC0-800; P < .05). Sensitivity and specificity for the validation set by radiologists A and B were as follows: sensitivity, 94.7% and 89.5%, and specificity, 75.0% and 79.2% for sADC200-1500, respectively; sensitivity, 94.7% and 96.1%, and specificity, 75.0% and 66.7%, for the combined thresholds approach, respectively; sensitivity, 92.1% and 92.1%, and specificity, 83.3% and 66.7%, for Bayesian analysis, respectively; and sensitivity and specificity, 100% and 79.2%, for BI-RADS, respectively. The significant difference in values of sADC200-1500 in progesterone receptor status (P = .002) was noted. sADC200-1500 was significantly different between histologic subtypes (P = .006). Conclusion Approaches that combined various IVIM and non-Gaussian diffusion MR imaging parameters may provide BI-RADS-equivalent scores almost comparable to BI-RADS categories without the use of contrast agents. Non-Gaussian diffusion parameters also differed by biologic prognostic factors. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mama/diagnóstico por imagem , Mama/patologia , Imagem de Difusão por Ressonância Magnética , Aumento da Imagem , Interpretação de Imagem Assistida por Computador/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Aumento da Imagem/instrumentação , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
10.
J Magn Reson Imaging ; 47(1): 97-104, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28556576

RESUMO

PURPOSE: To evaluate the feasibility of ultrafast dynamic contrast-enhanced (UF-DCE) magnetic resonance imaging (MRI) with compressed sensing (CS) for the separate identification of breast arteries/veins and perform temporal evaluations of breast arteries and veins with a focus on the association with ipsilateral cancers. MATERIALS AND METHODS: Our Institutional Review Board approved this study with retrospective design. Twenty-five female patients who underwent UF-DCE MRI at 3T were included. UF-DCE MRI consisting of 20 continuous frames was acquired using a prototype 3D gradient-echo volumetric interpolated breath-hold sequence including a CS reconstruction: temporal resolution, 3.65 sec/frame; spatial resolution, 0.9 × 1.3 × 2.5 mm. Two readers analyzed 19 maximum intensity projection images reconstructed from subtracted images, separately identified breast arteries/veins and the earliest frame in which they were respectively visualized, and calculated the time interval between arterial and venous visualization (A-V interval) for each breast. RESULTS: In total, 49 breasts including 31 lesions (breast cancer, 16; benign lesion, 15) were identified. In 39 of the 49 breasts (breasts with cancers, 16; breasts with benign lesions, 10; breasts with no lesions, 13), both breast arteries and veins were separately identified. The A-V intervals for breasts with cancers were significantly shorter than those for breasts with benign lesions (P = 0.043) and no lesions (P = 0.007). CONCLUSION: UF-DCE MRI using CS enables the separate identification of breast arteries/veins. Temporal evaluations calculating the time interval between arterial and venous visualization might be helpful in the differentiation of ipsilateral breast cancers from benign lesions. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:97-104.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/irrigação sanguínea , Meios de Contraste/química , Imageamento por Ressonância Magnética , Adulto , Idoso , Artérias/patologia , Neoplasias da Mama/irrigação sanguínea , Compressão de Dados , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Veias/patologia
11.
J Magn Reson Imaging ; 41(3): 610-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24590513

RESUMO

PURPOSE: To examine the association between apparent diffusion coefficient (ADC), cellularity, and Ki-67 index in mucinous breast carcinoma (MBC) compared with invasive carcinoma of no special type (NST). ADC's ability to identify lesions with highly proliferating MBC was also examined. MATERIALS AND METHODS: Pathologically confirmed MBCs (mucinous group, n = 18) and NSTs (control group, n = 18) were retrospectively analyzed. ADC was calculated from signal intensity of diffusion-weighted imaging at b values of 0 and 1000 sec/mm(2) . The Ki-67 index and cellularity were histopathologically evaluated. The mucinous group was classified into high Ki-67 mucinous group (Ki-67 index ≥14%, highly proliferating) and low Ki-67 mucinous group. RESULTS: In the mucinous group, minimum ADC (ADCmin) showed an inverse correlation with cellularity (r = -0.802, P < 0.0001) and Ki-67 index (r = -0.825, P < 0.0001). In the control group, ADCmin showed inverse correlation with cellularity (r = -0.537 P = 0.022), but no correlation with Ki-67 index (r = 0.035, P = 0.892). ADCmin of high Ki-67 mucinous group was significantly lower than that of low Ki-67 mucinous group (P = 0.005). CONCLUSION: This study demonstrates an inverse correlation between ADC and Ki-67 index in MBC and the ability of ADC to identify highly proliferating MBC. Considering that ADC can evaluate whole lesions noninvasively, ADC may be a promising noninvasive surrogate marker for Ki-67 index in the risk stratification of MBC.


Assuntos
Adenocarcinoma Mucinoso/diagnóstico , Neoplasias da Mama/diagnóstico , Antígeno Ki-67 , Adulto , Idoso , Mama/patologia , Carcinoma Ductal de Mama/diagnóstico , Meios de Contraste , Feminino , Gadolínio , Gadolínio DTPA , Compostos Heterocíclicos , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Compostos Organometálicos , Estudos Retrospectivos
12.
Radiol Imaging Cancer ; 6(2): e230082, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38551406

RESUMO

Purpose To compare quantitative measures of tumor metabolism and perfusion using fluorine 18 (18F) fluorodeoxyglucose (FDG) dedicated breast PET (dbPET) and breast dynamic contrast-enhanced (DCE) MRI during early treatment with neoadjuvant chemotherapy (NAC). Materials and Methods Prospectively collected DCE MRI and 18F-FDG dbPET examinations were analyzed at baseline (T0) and after 3 weeks (T1) of NAC in 20 participants with 22 invasive breast cancers. FDG dbPET-derived standardized uptake value (SUV), metabolic tumor volume, and total lesion glycolysis (TLG) and MRI-derived percent enhancement (PE), signal enhancement ratio (SER), and functional tumor volume (FTV) were calculated at both time points. Differences between FDG dbPET and MRI parameters were evaluated after stratifying by receptor status, Ki-67 index, and residual cancer burden. Parameters were compared using Wilcoxon signed rank and Mann-Whitney U tests. Results High Ki-67 tumors had higher baseline SUVmean (difference, 5.1; P = .01) and SUVpeak (difference, 5.5; P = .04). At T1, decreases were observed in FDG dbPET measures (pseudo-median difference T0 minus T1 value [95% CI]) of SUVmax (-6.2 [-10.2, -2.6]; P < .001), SUVmean (-2.6 [-4.9, -1.3]; P < .001), SUVpeak (-4.2 [-6.9, -2.3]; P < .001), and TLG (-29.1 mL3 [-71.4, -6.8]; P = .005) and MRI measures of SERpeak (-1.0 [-1.3, -0.2]; P = .02) and FTV (-11.6 mL3 [-22.2, -1.7]; P = .009). Relative to nonresponsive tumors, responsive tumors showed a difference (95% CI) in percent change in SUVmax of -34.3% (-55.9%, 1.5%; P = .06) and in PEpeak of -42.4% (95% CI: -110.5%, 8.5%; P = .08). Conclusion 18F-FDG dbPET was sensitive to early changes during NAC and provided complementary information to DCE MRI that may be useful for treatment response evaluation. Keywords: Breast, PET, Dynamic Contrast-enhanced MRI Clinical trial registration no. NCT01042379 Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Humanos , Feminino , Fluordesoxiglucose F18/uso terapêutico , Terapia Neoadjuvante , Antígeno Ki-67 , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Imageamento por Ressonância Magnética
13.
Radiol Imaging Cancer ; 5(4): e220126, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505107

RESUMO

Purpose To investigate the impact of longitudinal variation in functional tumor volume (FTV) underestimation and overestimation in predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC). Materials and Methods Women with breast cancer who were enrolled in the prospective I-SPY 2 TRIAL (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis 2) from May 2010 to November 2016 were eligible for this retrospective analysis. Participants underwent four MRI examinations during NAC treatment. FTV was calculated based on automated segmentation. Baseline FTV before treatment (FTV0) and the percentage of FTV change at early treatment and inter-regimen time points relative to baseline (∆FTV1 and ∆FTV2, respectively) were classified into high-standard or standard groups based on visual assessment of FTV under- and overestimation. Logistic regression models predicting pCR using single predictors (FTV0, ∆FTV1, and ∆FTV2) and multiple predictors (all three) were developed using bootstrap resampling with out-of-sample data evaluation with the area under the receiver operating characteristic curve (AUC) independently in each group. Results This study included 432 women (mean age, 49.0 years ± 10.6 [SD]). In the FTV0 model, the high-standard and standard groups showed similar AUCs (0.61 vs 0.62). The high-standard group had a higher estimated AUC compared with the standard group in the ∆FTV1 (0.74 vs 0.63), ∆FTV2 (0.79 vs 0.62), and multiple predictor models (0.85 vs 0.64), with a statistically significant difference for the latter two models (P = .03 and P = .01, respectively). Conclusion The findings in this study suggest that longitudinal variation in FTV estimation needs to be considered when using early FTV change as an MRI-based criterion for breast cancer treatment personalization. Keywords: Breast, Cancer, Dynamic Contrast-enhanced, MRI, Tumor Response ClinicalTrials.gov registration no. NCT01042379 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Ram in this issue.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante/métodos , Carga Tumoral , Estudos Retrospectivos , Estudos Prospectivos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos
14.
Tomography ; 8(2): 891-904, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448706

RESUMO

Background parenchymal enhancement (BPE) of breast fibroglandular tissue (FGT) in dynamic contrast-enhanced breast magnetic resonance imaging (MRI) has shown an association with response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Fully automated segmentation of FGT for BPE calculation is a challenge when image artifacts are present. Low spatial frequency intensity nonuniformity due to coil sensitivity variations is known as bias or inhomogeneity and can affect FGT segmentation and subsequent BPE measurement. In this study, we utilized the N4ITK algorithm for bias correction over a restricted bilateral breast volume and compared the contralateral FGT segmentations based on uncorrected and bias-corrected images in three MRI examinations at pre-treatment, early treatment and inter-regimen timepoints during NAC. A retrospective analysis of 2 cohorts was performed: one with 735 patients enrolled in the multi-center I-SPY 2 TRIAL and the sub-cohort of 340 patients meeting a high-quality benchmark for segmentation. Bias correction substantially increased the FGT segmentation quality for 6.3-8.0% of examinations, while it substantially decreased the quality for no examination. Our results showed improvement in segmentation quality and a small but statistically significant increase in the resulting BPE measurement after bias correction at all timepoints in both cohorts. Continuing studies are examining the effects on pCR prediction.


Assuntos
Neoplasias da Mama , Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante , Estudos Retrospectivos
15.
Tomography ; 8(3): 1208-1220, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35645385

RESUMO

This study evaluated the inter-reader agreement of tumor apparent diffusion coefficient (ADC) measurements performed on breast diffusion-weighted imaging (DWI) for assessing treatment response in a multi-center clinical trial of neoadjuvant chemotherapy (NAC) for breast cancer. DWIs from 103 breast cancer patients (mean age: 46 ± 11 years) acquired at baseline and after 3 weeks of treatment were evaluated independently by two readers. Three types of tumor regions of interests (ROIs) were delineated: multiple-slice restricted, single-slice restricted and single-slice tumor ROIs. Compared to tumor ROIs, restricted ROIs were limited to low ADC areas of enhancing tumor only. We found excellent agreement (intraclass correlation coefficient [ICC] ranged from 0.94 to 0.98) for mean ADC. Higher ICCs were observed in multiple-slice restricted ROIs (range: 0.97 to 0.98) than in other two ROI types (both in the range of 0.94 to 0.98). Among the three ROI types, the highest area under the receiver operating characteristic curves (AUCs) were observed for mean ADC of multiple-slice restricted ROIs (0.65, 95% confidence interval [CI]: 0.52-0.79 and 0.67, 95% CI: 0.53-0.81 for Reader 1 and Reader 2, respectively). In conclusion, mean ADC values of multiple-slice restricted ROI showed excellent agreement and similar predictive performance for pathologic complete response between the two readers.


Assuntos
Neoplasias da Mama , Adulto , Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes
16.
Radiol Artif Intell ; 4(1): e200231, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146431

RESUMO

PURPOSE: To develop a deep network architecture that would achieve fully automated radiologist-level segmentation of cancers at breast MRI. MATERIALS AND METHODS: In this retrospective study, 38 229 examinations (composed of 64 063 individual breast scans from 14 475 patients) were performed in female patients (age range, 12-94 years; mean age, 52 years ± 10 [standard deviation]) who presented between 2002 and 2014 at a single clinical site. A total of 2555 breast cancers were selected that had been segmented on two-dimensional (2D) images by radiologists, as well as 60 108 benign breasts that served as examples of noncancerous tissue; all these were used for model training. For testing, an additional 250 breast cancers were segmented independently on 2D images by four radiologists. Authors selected among several three-dimensional (3D) deep convolutional neural network architectures, input modalities, and harmonization methods. The outcome measure was the Dice score for 2D segmentation, which was compared between the network and radiologists by using the Wilcoxon signed rank test and the two one-sided test procedure. RESULTS: The highest-performing network on the training set was a 3D U-Net with dynamic contrast-enhanced MRI as input and with intensity normalized for each examination. In the test set, the median Dice score of this network was 0.77 (interquartile range, 0.26). The performance of the network was equivalent to that of the radiologists (two one-sided test procedures with radiologist performance of 0.69-0.84 as equivalence bounds, P < .001 for both; n = 250). CONCLUSION: When trained on a sufficiently large dataset, the developed 3D U-Net performed as well as fellowship-trained radiologists in detailed 2D segmentation of breast cancers at routine clinical MRI.Keywords: MRI, Breast, Segmentation, Supervised Learning, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning AlgorithmsPublished under a CC BY 4.0 license. Supplemental material is available for this article.

17.
Cancers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139594

RESUMO

This study tested the hypothesis that a change in the apparent diffusion coefficient (ADC) measured in diffusion-weighted MRI (DWI) is an independent imaging marker, and ADC performs better than functional tumor volume (FTV) for assessing treatment response in patients with locally advanced breast cancer receiving neoadjuvant immunotherapy. A total of 249 patients were randomized to standard neoadjuvant chemotherapy with pembrolizumab (pembro) or without pembrolizumab (control). DCE-MRI and DWI, performed prior to and 3 weeks after the start of treatment, were analyzed. Percent changes of tumor ADC metrics (mean, 5th to 95th percentiles of ADC histogram) and FTV were evaluated for the prediction of pathologic complete response (pCR) using a logistic regression model. The area under the ROC curve (AUC) estimated for the percent change in mean ADC was higher in the pembro cohort (0.73, 95% confidence interval [CI]: 0.52 to 0.93) than in the control cohort (0.63, 95% CI: 0.43 to 0.83). In the control cohort, the percent change of the 95th percentile ADC achieved the highest AUC, 0.69 (95% CI: 0.52 to 0.85). In the pembro cohort, the percent change of the 25th percentile ADC achieved the highest AUC, 0.75 (95% CI: 0.55 to 0.95). AUCs estimated for percent change of FTV were 0.61 (95% CI: 0.39 to 0.83) and 0.66 (95% CI: 0.47 to 0.85) for the pembro and control cohorts, respectively. Tumor ADC may perform better than FTV to predict pCR at an early treatment time-point during neoadjuvant immunotherapy.

18.
Breast Cancer ; 28(6): 1195-1211, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32959120

RESUMO

The purpose of this article is to overview the existing breast cancer screening guidelines for women at high risk from world-leading specialty societies. Accumulation of evidence and development of accessible genetic testing strategies have changed the idea of breast cancer screening for high-risk women. Personalized tailor-made screening adjusted for risk factors has been conducted in accordance with guidelines. The use of imaging modalities other than mammography including contrast-enhanced MRI and other various strategies for improving screening are discussed. The present review also mentions the existing challenges in high-risk screening and the latest information based on two large-scale studies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/normas , Guias de Prática Clínica como Assunto , Proteína BRCA1 , Proteína BRCA2 , Feminino , Humanos , Imageamento por Ressonância Magnética , Mamografia/normas , Fatores de Risco , Sociedades Médicas
19.
J Breast Imaging ; 3(2): 201-207, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38424820

RESUMO

OBJECTIVE: To investigate the feasibility of using deep learning to identify tumor-containing axial slices on breast MRI images. METHODS: This IRB-approved retrospective study included consecutive patients with operable invasive breast cancer undergoing pretreatment breast MRI between January 1, 2014, and December 31, 2017. Axial tumor-containing slices from the first postcontrast phase were extracted. Each axial image was subdivided into two subimages: one of the ipsilateral cancer-containing breast and one of the contralateral healthy breast. Cases were randomly divided into training, validation, and testing sets. A convolutional neural network was trained to classify subimages into "cancer" and "no cancer" categories. Accuracy, sensitivity, and specificity of the classification system were determined using pathology as the reference standard. A two-reader study was performed to measure the time savings of the deep learning algorithm using descriptive statistics. RESULTS: Two hundred and seventy-three patients with unilateral breast cancer met study criteria. On the held-out test set, accuracy of the deep learning system for tumor detection was 92.8% (648/706; 95% confidence interval: 89.7%-93.8%). Sensitivity and specificity were 89.5% and 94.3%, respectively. Readers spent 3 to 45 seconds to scroll to the tumor-containing slices without use of the deep learning algorithm. CONCLUSION: In breast MR exams containing breast cancer, deep learning can be used to identify the tumor-containing slices. This technology may be integrated into the picture archiving and communication system to bypass scrolling when viewing stacked images, which can be helpful during nonsystematic image viewing, such as during interdisciplinary tumor board meetings.

20.
Tomography ; 6(2): 77-85, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548283

RESUMO

We investigated the impact of magnetic resonance imaging (MRI) protocol adherence on the ability of functional tumor volume (FTV), a quantitative measure of tumor burden measured from dynamic contrast-enhanced MRI, to predict response to neoadjuvant chemotherapy. We retrospectively reviewed dynamic contrast-enhanced breast MRIs for 990 patients enrolled in the multicenter I-SPY 2 TRIAL. During neoadjuvant chemotherapy, each patient had 4 MRI visits (pretreatment [T0], early-treatment [T1], inter-regimen [T2], and presurgery [T3]). Protocol adherence was rated for 7 image quality factors at T0-T2. Image quality factors confirmed by DICOM header (acquisition duration, early phase timing, field of view, and spatial resolution) were adherent if the scan parameters followed the standardized imaging protocol, and changes from T0 for a single patient's visits were limited to defined ranges. Other image quality factors (contralateral image quality, patient motion, and contrast administration error) were considered adherent if imaging issues were absent or minimal. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of FTV change (percent change of FTV from T0 to T1 and T2) in predicting pathological complete response. FTV changes with adherent image quality in all factors had higher estimated AUC than those with non-adherent image quality, although the differences did not reach statistical significance (T1, 0.71 vs. 0.66; T2, 0.72 vs. 0.68). These data highlight the importance of MRI protocol adherence to predefined scan parameters and the impact of data quality on the predictive performance of FTV in the breast cancer neoadjuvant setting.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Estudos Multicêntricos como Assunto , Terapia Neoadjuvante , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA